Blame internal/ceres/levenberg_marquardt_strategy.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/levenberg_marquardt_strategy.h"
Packit ea1746
Packit ea1746
#include <cmath>
Packit ea1746
#include "Eigen/Core"
Packit ea1746
#include "ceres/array_utils.h"
Packit ea1746
#include "ceres/internal/eigen.h"
Packit ea1746
#include "ceres/linear_least_squares_problems.h"
Packit ea1746
#include "ceres/linear_solver.h"
Packit ea1746
#include "ceres/sparse_matrix.h"
Packit ea1746
#include "ceres/trust_region_strategy.h"
Packit ea1746
#include "ceres/types.h"
Packit ea1746
#include "glog/logging.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
LevenbergMarquardtStrategy::LevenbergMarquardtStrategy(
Packit ea1746
    const TrustRegionStrategy::Options& options)
Packit ea1746
    : linear_solver_(options.linear_solver),
Packit ea1746
      radius_(options.initial_radius),
Packit ea1746
      max_radius_(options.max_radius),
Packit ea1746
      min_diagonal_(options.min_lm_diagonal),
Packit ea1746
      max_diagonal_(options.max_lm_diagonal),
Packit ea1746
      decrease_factor_(2.0),
Packit ea1746
      reuse_diagonal_(false) {
Packit ea1746
  CHECK_NOTNULL(linear_solver_);
Packit ea1746
  CHECK_GT(min_diagonal_, 0.0);
Packit ea1746
  CHECK_LE(min_diagonal_, max_diagonal_);
Packit ea1746
  CHECK_GT(max_radius_, 0.0);
Packit ea1746
}
Packit ea1746
Packit ea1746
LevenbergMarquardtStrategy::~LevenbergMarquardtStrategy() {
Packit ea1746
}
Packit ea1746
Packit ea1746
TrustRegionStrategy::Summary LevenbergMarquardtStrategy::ComputeStep(
Packit ea1746
    const TrustRegionStrategy::PerSolveOptions& per_solve_options,
Packit ea1746
    SparseMatrix* jacobian,
Packit ea1746
    const double* residuals,
Packit ea1746
    double* step) {
Packit ea1746
  CHECK_NOTNULL(jacobian);
Packit ea1746
  CHECK_NOTNULL(residuals);
Packit ea1746
  CHECK_NOTNULL(step);
Packit ea1746
Packit ea1746
  const int num_parameters = jacobian->num_cols();
Packit ea1746
  if (!reuse_diagonal_) {
Packit ea1746
    if (diagonal_.rows() != num_parameters) {
Packit ea1746
      diagonal_.resize(num_parameters, 1);
Packit ea1746
    }
Packit ea1746
Packit ea1746
    jacobian->SquaredColumnNorm(diagonal_.data());
Packit ea1746
    for (int i = 0; i < num_parameters; ++i) {
Packit ea1746
      diagonal_[i] = std::min(std::max(diagonal_[i], min_diagonal_),
Packit ea1746
                              max_diagonal_);
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  lm_diagonal_ = (diagonal_ / radius_).array().sqrt();
Packit ea1746
Packit ea1746
  LinearSolver::PerSolveOptions solve_options;
Packit ea1746
  solve_options.D = lm_diagonal_.data();
Packit ea1746
  solve_options.q_tolerance = per_solve_options.eta;
Packit ea1746
  // Disable r_tolerance checking. Since we only care about
Packit ea1746
  // termination via the q_tolerance. As Nash and Sofer show,
Packit ea1746
  // r_tolerance based termination is essentially useless in
Packit ea1746
  // Truncated Newton methods.
Packit ea1746
  solve_options.r_tolerance = -1.0;
Packit ea1746
Packit ea1746
  // Invalidate the output array lm_step, so that we can detect if
Packit ea1746
  // the linear solver generated numerical garbage.  This is known
Packit ea1746
  // to happen for the DENSE_QR and then DENSE_SCHUR solver when
Packit ea1746
  // the Jacobin is severly rank deficient and mu is too small.
Packit ea1746
  InvalidateArray(num_parameters, step);
Packit ea1746
Packit ea1746
  // Instead of solving Jx = -r, solve Jy = r.
Packit ea1746
  // Then x can be found as x = -y, but the inputs jacobian and residuals
Packit ea1746
  // do not need to be modified.
Packit ea1746
  LinearSolver::Summary linear_solver_summary =
Packit ea1746
      linear_solver_->Solve(jacobian, residuals, solve_options, step);
Packit ea1746
Packit ea1746
  if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
Packit ea1746
    LOG(WARNING) << "Linear solver fatal error: "
Packit ea1746
                 << linear_solver_summary.message;
Packit ea1746
  } else if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE)  {
Packit ea1746
    LOG(WARNING) << "Linear solver failure. Failed to compute a step: "
Packit ea1746
                 << linear_solver_summary.message;
Packit ea1746
  } else if (!IsArrayValid(num_parameters, step)) {
Packit ea1746
    LOG(WARNING) << "Linear solver failure. Failed to compute a finite step.";
Packit ea1746
    linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
Packit ea1746
  } else {
Packit ea1746
    VectorRef(step, num_parameters) *= -1.0;
Packit ea1746
  }
Packit ea1746
  reuse_diagonal_ = true;
Packit ea1746
Packit ea1746
  if (per_solve_options.dump_format_type == CONSOLE ||
Packit ea1746
      (per_solve_options.dump_format_type != CONSOLE &&
Packit ea1746
       !per_solve_options.dump_filename_base.empty())) {
Packit ea1746
    if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
Packit ea1746
                                       per_solve_options.dump_format_type,
Packit ea1746
                                       jacobian,
Packit ea1746
                                       solve_options.D,
Packit ea1746
                                       residuals,
Packit ea1746
                                       step,
Packit ea1746
                                       0)) {
Packit ea1746
      LOG(ERROR) << "Unable to dump trust region problem."
Packit ea1746
                 << " Filename base: " << per_solve_options.dump_filename_base;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary summary;
Packit ea1746
  summary.residual_norm = linear_solver_summary.residual_norm;
Packit ea1746
  summary.num_iterations = linear_solver_summary.num_iterations;
Packit ea1746
  summary.termination_type = linear_solver_summary.termination_type;
Packit ea1746
  return summary;
Packit ea1746
}
Packit ea1746
Packit ea1746
void LevenbergMarquardtStrategy::StepAccepted(double step_quality) {
Packit ea1746
  CHECK_GT(step_quality, 0.0);
Packit ea1746
  radius_ = radius_ / std::max(1.0 / 3.0,
Packit ea1746
                               1.0 - pow(2.0 * step_quality - 1.0, 3));
Packit ea1746
  radius_ = std::min(max_radius_, radius_);
Packit ea1746
  decrease_factor_ = 2.0;
Packit ea1746
  reuse_diagonal_ = false;
Packit ea1746
}
Packit ea1746
Packit ea1746
void LevenbergMarquardtStrategy::StepRejected(double step_quality) {
Packit ea1746
  radius_ = radius_ / decrease_factor_;
Packit ea1746
  decrease_factor_ *= 2.0;
Packit ea1746
  reuse_diagonal_ = true;
Packit ea1746
}
Packit ea1746
Packit ea1746
double LevenbergMarquardtStrategy::Radius() const {
Packit ea1746
  return radius_;
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres