Blame internal/ceres/invert_psd_matrix_test.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2017 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/invert_psd_matrix.h"
Packit ea1746
Packit ea1746
#include "ceres/internal/eigen.h"
Packit ea1746
#include "gtest/gtest.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
static const bool kFullRank = true;
Packit ea1746
static const bool kRankDeficient = false;
Packit ea1746
Packit ea1746
template <int kSize>
Packit ea1746
typename EigenTypes<kSize, kSize>::Matrix RandomPSDMatrixWithEigenValues(
Packit ea1746
    const typename EigenTypes<kSize>::Vector& eigenvalues) {
Packit ea1746
  typename EigenTypes<kSize, kSize>::Matrix m;
Packit ea1746
  m.setRandom();
Packit ea1746
  Eigen::SelfAdjointEigenSolver<typename EigenTypes<kSize, kSize>::Matrix> es(
Packit ea1746
      m);
Packit ea1746
  return es.eigenvectors() * eigenvalues.asDiagonal() *
Packit ea1746
         es.eigenvectors().transpose();
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(InvertPSDMatrix, Identity3x3) {
Packit ea1746
  const Matrix m = Matrix::Identity(3, 3);
Packit ea1746
  const Matrix inverse_m = InvertPSDMatrix<3>(kFullRank, m);
Packit ea1746
  EXPECT_NEAR((inverse_m - m).norm() / m.norm(),
Packit ea1746
              0.0,
Packit ea1746
              std::numeric_limits<double>::epsilon());
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(InvertPSDMatrix, FullRank5x5) {
Packit ea1746
  EigenTypes<5>::Vector eigenvalues;
Packit ea1746
  eigenvalues.setRandom();
Packit ea1746
  eigenvalues = eigenvalues.array().abs().matrix();
Packit ea1746
  const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues);
Packit ea1746
  const Matrix inverse_m = InvertPSDMatrix<5>(kFullRank, m);
Packit ea1746
  EXPECT_NEAR((m * inverse_m - Matrix::Identity(5,5)).norm() / 5.0,  0.0,
Packit ea1746
              std::numeric_limits<double>::epsilon());
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(InvertPSDMatrix, RankDeficient5x5) {
Packit ea1746
  EigenTypes<5>::Vector eigenvalues;
Packit ea1746
  eigenvalues.setRandom();
Packit ea1746
  eigenvalues = eigenvalues.array().abs().matrix();
Packit ea1746
  eigenvalues(3) = 0.0;
Packit ea1746
  const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues);
Packit ea1746
  const Matrix inverse_m = InvertPSDMatrix<5>(kRankDeficient, m);
Packit ea1746
  Matrix pseudo_identity = Matrix::Identity(5, 5);
Packit ea1746
  pseudo_identity(3, 3) = 0.0;
Packit ea1746
  EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(),
Packit ea1746
              0.0,
Packit ea1746
              10 * std::numeric_limits<double>::epsilon());
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres