Blame internal/ceres/gradient_checking_cost_function_test.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: keir@google.com (Keir Mierle)
Packit ea1746
Packit ea1746
#include "ceres/gradient_checking_cost_function.h"
Packit ea1746
Packit ea1746
#include <cmath>
Packit ea1746
#include <vector>
Packit ea1746
#include "ceres/cost_function.h"
Packit ea1746
#include "ceres/internal/scoped_ptr.h"
Packit ea1746
#include "ceres/local_parameterization.h"
Packit ea1746
#include "ceres/loss_function.h"
Packit ea1746
#include "ceres/parameter_block.h"
Packit ea1746
#include "ceres/problem_impl.h"
Packit ea1746
#include "ceres/program.h"
Packit ea1746
#include "ceres/random.h"
Packit ea1746
#include "ceres/residual_block.h"
Packit ea1746
#include "ceres/sized_cost_function.h"
Packit ea1746
#include "ceres/types.h"
Packit ea1746
#include "glog/logging.h"
Packit ea1746
#include "gmock/gmock.h"
Packit ea1746
#include "gtest/gtest.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
using std::vector;
Packit ea1746
using testing::AllOf;
Packit ea1746
using testing::AnyNumber;
Packit ea1746
using testing::HasSubstr;
Packit ea1746
using testing::_;
Packit ea1746
Packit ea1746
// Pick a (non-quadratic) function whose derivative are easy:
Packit ea1746
//
Packit ea1746
//    f = exp(- a' x).
Packit ea1746
//   df = - f a.
Packit ea1746
//
Packit ea1746
// where 'a' is a vector of the same size as 'x'. In the block
Packit ea1746
// version, they are both block vectors, of course.
Packit ea1746
template<int bad_block = 1, int bad_variable = 2>
Packit ea1746
class TestTerm : public CostFunction {
Packit ea1746
 public:
Packit ea1746
  // The constructor of this function needs to know the number
Packit ea1746
  // of blocks desired, and the size of each block.
Packit ea1746
  TestTerm(int arity, int const *dim) : arity_(arity) {
Packit ea1746
    // Make 'arity' random vectors.
Packit ea1746
    a_.resize(arity_);
Packit ea1746
    for (int j = 0; j < arity_; ++j) {
Packit ea1746
      a_[j].resize(dim[j]);
Packit ea1746
      for (int u = 0; u < dim[j]; ++u) {
Packit ea1746
        a_[j][u] = 2.0 * RandDouble() - 1.0;
Packit ea1746
      }
Packit ea1746
    }
Packit ea1746
Packit ea1746
    for (int i = 0; i < arity_; i++) {
Packit ea1746
      mutable_parameter_block_sizes()->push_back(dim[i]);
Packit ea1746
    }
Packit ea1746
    set_num_residuals(1);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  bool Evaluate(double const* const* parameters,
Packit ea1746
                double* residuals,
Packit ea1746
                double** jacobians) const {
Packit ea1746
    // Compute a . x.
Packit ea1746
    double ax = 0;
Packit ea1746
    for (int j = 0; j < arity_; ++j) {
Packit ea1746
      for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
Packit ea1746
        ax += a_[j][u] * parameters[j][u];
Packit ea1746
      }
Packit ea1746
    }
Packit ea1746
Packit ea1746
    // This is the cost, but also appears as a factor
Packit ea1746
    // in the derivatives.
Packit ea1746
    double f = *residuals = exp(-ax);
Packit ea1746
Packit ea1746
    // Accumulate 1st order derivatives.
Packit ea1746
    if (jacobians) {
Packit ea1746
      for (int j = 0; j < arity_; ++j) {
Packit ea1746
        if (jacobians[j]) {
Packit ea1746
          for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
Packit ea1746
            // See comments before class.
Packit ea1746
            jacobians[j][u] = - f * a_[j][u];
Packit ea1746
Packit ea1746
            if (bad_block == j && bad_variable == u) {
Packit ea1746
              // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry
Packit ea1746
              // like what happens when users make an error in their jacobian
Packit ea1746
              // computations. This should get detected.
Packit ea1746
              LOG(INFO) << "Poisoning jacobian for parameter block " << j
Packit ea1746
                        << ", row 0, column " << u;
Packit ea1746
              jacobians[j][u] += 500;
Packit ea1746
            }
Packit ea1746
          }
Packit ea1746
        }
Packit ea1746
      }
Packit ea1746
    }
Packit ea1746
Packit ea1746
    return true;
Packit ea1746
  }
Packit ea1746
Packit ea1746
 private:
Packit ea1746
  int arity_;
Packit ea1746
  vector<vector<double> > a_;
Packit ea1746
};
Packit ea1746
Packit ea1746
TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) {
Packit ea1746
  srand(5);
Packit ea1746
Packit ea1746
  // Test with 3 blocks of size 2, 3 and 4.
Packit ea1746
  int const arity = 3;
Packit ea1746
  int const dim[arity] = { 2, 3, 4 };
Packit ea1746
Packit ea1746
  // Make a random set of blocks.
Packit ea1746
  vector<double*> parameters(arity);
Packit ea1746
  for (int j = 0; j < arity; ++j) {
Packit ea1746
    parameters[j] = new double[dim[j]];
Packit ea1746
    for (int u = 0; u < dim[j]; ++u) {
Packit ea1746
      parameters[j][u] = 2.0 * RandDouble() - 1.0;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  double original_residual;
Packit ea1746
  double residual;
Packit ea1746
  vector<double*> original_jacobians(arity);
Packit ea1746
  vector<double*> jacobians(arity);
Packit ea1746
Packit ea1746
  for (int j = 0; j < arity; ++j) {
Packit ea1746
    // Since residual is one dimensional the jacobians have the same
Packit ea1746
    // size as the parameter blocks.
Packit ea1746
    jacobians[j] = new double[dim[j]];
Packit ea1746
    original_jacobians[j] = new double[dim[j]];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  const double kRelativeStepSize = 1e-6;
Packit ea1746
  const double kRelativePrecision = 1e-4;
Packit ea1746
Packit ea1746
  TestTerm<-1, -1> term(arity, dim);
Packit ea1746
  GradientCheckingIterationCallback callback;
Packit ea1746
  scoped_ptr<CostFunction> gradient_checking_cost_function(
Packit ea1746
      CreateGradientCheckingCostFunction(&term, NULL,
Packit ea1746
                                         kRelativeStepSize,
Packit ea1746
                                         kRelativePrecision,
Packit ea1746
                                         "Ignored.", &callback));
Packit ea1746
  term.Evaluate(&parameters[0],
Packit ea1746
                &original_residual,
Packit ea1746
                &original_jacobians[0]);
Packit ea1746
Packit ea1746
  gradient_checking_cost_function->Evaluate(&parameters[0],
Packit ea1746
                                            &residual,
Packit ea1746
                                            &jacobians[0]);
Packit ea1746
  EXPECT_EQ(original_residual, residual);
Packit ea1746
Packit ea1746
  for (int j = 0; j < arity; j++) {
Packit ea1746
    for (int k = 0; k < dim[j]; ++k) {
Packit ea1746
      EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]);
Packit ea1746
    }
Packit ea1746
Packit ea1746
    delete[] parameters[j];
Packit ea1746
    delete[] jacobians[j];
Packit ea1746
    delete[] original_jacobians[j];
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(GradientCheckingCostFunction, SmokeTest) {
Packit ea1746
  srand(5);
Packit ea1746
Packit ea1746
  // Test with 3 blocks of size 2, 3 and 4.
Packit ea1746
  int const arity = 3;
Packit ea1746
  int const dim[arity] = { 2, 3, 4 };
Packit ea1746
Packit ea1746
  // Make a random set of blocks.
Packit ea1746
  vector<double*> parameters(arity);
Packit ea1746
  for (int j = 0; j < arity; ++j) {
Packit ea1746
    parameters[j] = new double[dim[j]];
Packit ea1746
    for (int u = 0; u < dim[j]; ++u) {
Packit ea1746
      parameters[j][u] = 2.0 * RandDouble() - 1.0;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  double residual;
Packit ea1746
  vector<double*> jacobians(arity);
Packit ea1746
  for (int j = 0; j < arity; ++j) {
Packit ea1746
    // Since residual is one dimensional the jacobians have the same size as the
Packit ea1746
    // parameter blocks.
Packit ea1746
    jacobians[j] = new double[dim[j]];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  const double kRelativeStepSize = 1e-6;
Packit ea1746
  const double kRelativePrecision = 1e-4;
Packit ea1746
Packit ea1746
  // Should have one term that's bad, causing everything to get dumped.
Packit ea1746
  LOG(INFO) << "Bad gradient";
Packit ea1746
  {
Packit ea1746
    TestTerm<1, 2> term(arity, dim);
Packit ea1746
    GradientCheckingIterationCallback callback;
Packit ea1746
    scoped_ptr<CostFunction> gradient_checking_cost_function(
Packit ea1746
        CreateGradientCheckingCostFunction(&term, NULL,
Packit ea1746
                                           kRelativeStepSize,
Packit ea1746
                                           kRelativePrecision,
Packit ea1746
                                           "Fuzzy banana", &callback));
Packit ea1746
    EXPECT_TRUE(
Packit ea1746
        gradient_checking_cost_function->Evaluate(&parameters[0], &residual,
Packit ea1746
                                                  &jacobians[0]));
Packit ea1746
    EXPECT_TRUE(callback.gradient_error_detected());
Packit ea1746
    EXPECT_TRUE(callback.error_log().find("Fuzzy banana") != std::string::npos);
Packit ea1746
    EXPECT_TRUE(callback.error_log().find("(1,0,2) Relative error worse than")
Packit ea1746
                != std::string::npos);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // The gradient is correct, so no errors are reported.
Packit ea1746
  LOG(INFO) << "Good gradient";
Packit ea1746
  {
Packit ea1746
    TestTerm<-1, -1> term(arity, dim);
Packit ea1746
    GradientCheckingIterationCallback callback;
Packit ea1746
    scoped_ptr<CostFunction> gradient_checking_cost_function(
Packit ea1746
        CreateGradientCheckingCostFunction(&term, NULL,
Packit ea1746
                                           kRelativeStepSize,
Packit ea1746
                                           kRelativePrecision,
Packit ea1746
                                           "Fuzzy banana", &callback));
Packit ea1746
    EXPECT_TRUE(
Packit ea1746
        gradient_checking_cost_function->Evaluate(&parameters[0], &residual,
Packit ea1746
                                                  &jacobians[0]));
Packit ea1746
    EXPECT_FALSE(callback.gradient_error_detected());
Packit ea1746
  }
Packit ea1746
Packit ea1746
  for (int j = 0; j < arity; j++) {
Packit ea1746
    delete[] parameters[j];
Packit ea1746
    delete[] jacobians[j];
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
// The following three classes are for the purposes of defining
Packit ea1746
// function signatures. They have dummy Evaluate functions.
Packit ea1746
Packit ea1746
// Trivial cost function that accepts a single argument.
Packit ea1746
class UnaryCostFunction : public CostFunction {
Packit ea1746
 public:
Packit ea1746
  UnaryCostFunction(int num_residuals, int32 parameter_block_size) {
Packit ea1746
    set_num_residuals(num_residuals);
Packit ea1746
    mutable_parameter_block_sizes()->push_back(parameter_block_size);
Packit ea1746
  }
Packit ea1746
  virtual ~UnaryCostFunction() {}
Packit ea1746
Packit ea1746
  virtual bool Evaluate(double const* const* parameters,
Packit ea1746
                        double* residuals,
Packit ea1746
                        double** jacobians) const {
Packit ea1746
    for (int i = 0; i < num_residuals(); ++i) {
Packit ea1746
      residuals[i] = 1;
Packit ea1746
    }
Packit ea1746
    return true;
Packit ea1746
  }
Packit ea1746
};
Packit ea1746
Packit ea1746
// Trivial cost function that accepts two arguments.
Packit ea1746
class BinaryCostFunction: public CostFunction {
Packit ea1746
 public:
Packit ea1746
  BinaryCostFunction(int num_residuals,
Packit ea1746
                     int32 parameter_block1_size,
Packit ea1746
                     int32 parameter_block2_size) {
Packit ea1746
    set_num_residuals(num_residuals);
Packit ea1746
    mutable_parameter_block_sizes()->push_back(parameter_block1_size);
Packit ea1746
    mutable_parameter_block_sizes()->push_back(parameter_block2_size);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  virtual bool Evaluate(double const* const* parameters,
Packit ea1746
                        double* residuals,
Packit ea1746
                        double** jacobians) const {
Packit ea1746
    for (int i = 0; i < num_residuals(); ++i) {
Packit ea1746
      residuals[i] = 2;
Packit ea1746
    }
Packit ea1746
    return true;
Packit ea1746
  }
Packit ea1746
};
Packit ea1746
Packit ea1746
// Trivial cost function that accepts three arguments.
Packit ea1746
class TernaryCostFunction: public CostFunction {
Packit ea1746
 public:
Packit ea1746
  TernaryCostFunction(int num_residuals,
Packit ea1746
                      int32 parameter_block1_size,
Packit ea1746
                      int32 parameter_block2_size,
Packit ea1746
                      int32 parameter_block3_size) {
Packit ea1746
    set_num_residuals(num_residuals);
Packit ea1746
    mutable_parameter_block_sizes()->push_back(parameter_block1_size);
Packit ea1746
    mutable_parameter_block_sizes()->push_back(parameter_block2_size);
Packit ea1746
    mutable_parameter_block_sizes()->push_back(parameter_block3_size);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  virtual bool Evaluate(double const* const* parameters,
Packit ea1746
                        double* residuals,
Packit ea1746
                        double** jacobians) const {
Packit ea1746
    for (int i = 0; i < num_residuals(); ++i) {
Packit ea1746
      residuals[i] = 3;
Packit ea1746
    }
Packit ea1746
    return true;
Packit ea1746
  }
Packit ea1746
};
Packit ea1746
Packit ea1746
// Verify that the two ParameterBlocks are formed from the same user
Packit ea1746
// array and have the same LocalParameterization object.
Packit ea1746
void ParameterBlocksAreEquivalent(const ParameterBlock*  left,
Packit ea1746
                                  const ParameterBlock* right) {
Packit ea1746
  CHECK_NOTNULL(left);
Packit ea1746
  CHECK_NOTNULL(right);
Packit ea1746
  EXPECT_EQ(left->user_state(), right->user_state());
Packit ea1746
  EXPECT_EQ(left->Size(), right->Size());
Packit ea1746
  EXPECT_EQ(left->Size(), right->Size());
Packit ea1746
  EXPECT_EQ(left->LocalSize(), right->LocalSize());
Packit ea1746
  EXPECT_EQ(left->local_parameterization(), right->local_parameterization());
Packit ea1746
  EXPECT_EQ(left->IsConstant(), right->IsConstant());
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) {
Packit ea1746
  // Parameter blocks with arbitrarily chosen initial values.
Packit ea1746
  double x[] = {1.0, 2.0, 3.0};
Packit ea1746
  double y[] = {4.0, 5.0, 6.0, 7.0};
Packit ea1746
  double z[] = {8.0, 9.0, 10.0, 11.0, 12.0};
Packit ea1746
  double w[] = {13.0, 14.0, 15.0, 16.0};
Packit ea1746
Packit ea1746
  ProblemImpl problem_impl;
Packit ea1746
  problem_impl.AddParameterBlock(x, 3);
Packit ea1746
  problem_impl.AddParameterBlock(y, 4);
Packit ea1746
  problem_impl.SetParameterBlockConstant(y);
Packit ea1746
  problem_impl.AddParameterBlock(z, 5);
Packit ea1746
  problem_impl.AddParameterBlock(w, 4, new QuaternionParameterization);
Packit ea1746
  problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x);
Packit ea1746
  problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4) ,
Packit ea1746
                                NULL, z, y);
Packit ea1746
  problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5),
Packit ea1746
                                new TrivialLoss, x, z);
Packit ea1746
  problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3),
Packit ea1746
                                NULL, z, x);
Packit ea1746
  problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4),
Packit ea1746
                                NULL, z, x, y);
Packit ea1746
Packit ea1746
  GradientCheckingIterationCallback callback;
Packit ea1746
  scoped_ptr<ProblemImpl> gradient_checking_problem_impl(
Packit ea1746
      CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0, &callback));
Packit ea1746
Packit ea1746
  // The dimensions of the two problems match.
Packit ea1746
  EXPECT_EQ(problem_impl.NumParameterBlocks(),
Packit ea1746
            gradient_checking_problem_impl->NumParameterBlocks());
Packit ea1746
  EXPECT_EQ(problem_impl.NumResidualBlocks(),
Packit ea1746
            gradient_checking_problem_impl->NumResidualBlocks());
Packit ea1746
Packit ea1746
  EXPECT_EQ(problem_impl.NumParameters(),
Packit ea1746
            gradient_checking_problem_impl->NumParameters());
Packit ea1746
  EXPECT_EQ(problem_impl.NumResiduals(),
Packit ea1746
            gradient_checking_problem_impl->NumResiduals());
Packit ea1746
Packit ea1746
  const Program& program = problem_impl.program();
Packit ea1746
  const Program& gradient_checking_program =
Packit ea1746
      gradient_checking_problem_impl->program();
Packit ea1746
Packit ea1746
  // Since we added the ParameterBlocks and ResidualBlocks explicitly,
Packit ea1746
  // they should be in the same order in the two programs. It is
Packit ea1746
  // possible that may change due to implementation changes to
Packit ea1746
  // Program. This is not expected to be the case and writing code to
Packit ea1746
  // anticipate that possibility not worth the extra complexity in
Packit ea1746
  // this test.
Packit ea1746
  for (int i = 0; i < program.parameter_blocks().size(); ++i) {
Packit ea1746
    ParameterBlocksAreEquivalent(
Packit ea1746
        program.parameter_blocks()[i],
Packit ea1746
        gradient_checking_program.parameter_blocks()[i]);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  for (int i = 0; i < program.residual_blocks().size(); ++i) {
Packit ea1746
    // Compare the sizes of the two ResidualBlocks.
Packit ea1746
    const ResidualBlock* original_residual_block =
Packit ea1746
        program.residual_blocks()[i];
Packit ea1746
    const ResidualBlock* new_residual_block =
Packit ea1746
        gradient_checking_program.residual_blocks()[i];
Packit ea1746
    EXPECT_EQ(original_residual_block->NumParameterBlocks(),
Packit ea1746
              new_residual_block->NumParameterBlocks());
Packit ea1746
    EXPECT_EQ(original_residual_block->NumResiduals(),
Packit ea1746
              new_residual_block->NumResiduals());
Packit ea1746
    EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(),
Packit ea1746
              new_residual_block->NumScratchDoublesForEvaluate());
Packit ea1746
Packit ea1746
    // Verify that the ParameterBlocks for the two residuals are equivalent.
Packit ea1746
    for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) {
Packit ea1746
      ParameterBlocksAreEquivalent(
Packit ea1746
          original_residual_block->parameter_blocks()[j],
Packit ea1746
          new_residual_block->parameter_blocks()[j]);
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres