Blame internal/ceres/evaluator.h

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
//         keir@google.com (Keir Mierle)
Packit ea1746
Packit ea1746
#ifndef CERES_INTERNAL_EVALUATOR_H_
Packit ea1746
#define CERES_INTERNAL_EVALUATOR_H_
Packit ea1746
Packit ea1746
#include <map>
Packit ea1746
#include <string>
Packit ea1746
#include <vector>
Packit ea1746
Packit ea1746
#include "ceres/execution_summary.h"
Packit ea1746
#include "ceres/internal/port.h"
Packit ea1746
#include "ceres/types.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
Packit ea1746
struct CRSMatrix;
Packit ea1746
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
class Program;
Packit ea1746
class SparseMatrix;
Packit ea1746
Packit ea1746
// The Evaluator interface offers a way to interact with a least squares cost
Packit ea1746
// function that is useful for an optimizer that wants to minimize the least
Packit ea1746
// squares objective. This insulates the optimizer from issues like Jacobian
Packit ea1746
// storage, parameterization, etc.
Packit ea1746
class Evaluator {
Packit ea1746
 public:
Packit ea1746
  virtual ~Evaluator();
Packit ea1746
Packit ea1746
  struct Options {
Packit ea1746
    Options()
Packit ea1746
        : num_threads(1),
Packit ea1746
          num_eliminate_blocks(-1),
Packit ea1746
          linear_solver_type(DENSE_QR),
Packit ea1746
          dynamic_sparsity(false) {}
Packit ea1746
Packit ea1746
    int num_threads;
Packit ea1746
    int num_eliminate_blocks;
Packit ea1746
    LinearSolverType linear_solver_type;
Packit ea1746
    bool dynamic_sparsity;
Packit ea1746
  };
Packit ea1746
Packit ea1746
  static Evaluator* Create(const Options& options,
Packit ea1746
                           Program* program,
Packit ea1746
                           std::string* error);
Packit ea1746
Packit ea1746
  // This is used for computing the cost, residual and Jacobian for
Packit ea1746
  // returning to the user. For actually solving the optimization
Packit ea1746
  // problem, the optimization algorithm uses the ProgramEvaluator
Packit ea1746
  // objects directly.
Packit ea1746
  //
Packit ea1746
  // The residual, gradients and jacobian pointers can be NULL, in
Packit ea1746
  // which case they will not be evaluated. cost cannot be NULL.
Packit ea1746
  //
Packit ea1746
  // The parallelism of the evaluator is controlled by num_threads; it
Packit ea1746
  // should be at least 1.
Packit ea1746
  //
Packit ea1746
  // Note: That this function does not take a parameter vector as
Packit ea1746
  // input. The parameter blocks are evaluated on the values contained
Packit ea1746
  // in the arrays pointed to by their user_state pointers.
Packit ea1746
  //
Packit ea1746
  // Also worth noting is that this function mutates program by
Packit ea1746
  // calling Program::SetParameterOffsetsAndIndex() on it so that an
Packit ea1746
  // evaluator object can be constructed.
Packit ea1746
  static bool Evaluate(Program* program,
Packit ea1746
                       int num_threads,
Packit ea1746
                       double* cost,
Packit ea1746
                       std::vector<double>* residuals,
Packit ea1746
                       std::vector<double>* gradient,
Packit ea1746
                       CRSMatrix* jacobian);
Packit ea1746
Packit ea1746
  // Build and return a sparse matrix for storing and working with the Jacobian
Packit ea1746
  // of the objective function. The jacobian has dimensions
Packit ea1746
  // NumEffectiveParameters() by NumParameters(), and is typically extremely
Packit ea1746
  // sparse. Since the sparsity pattern of the Jacobian remains constant over
Packit ea1746
  // the lifetime of the optimization problem, this method is used to
Packit ea1746
  // instantiate a SparseMatrix object with the appropriate sparsity structure
Packit ea1746
  // (which can be an expensive operation) and then reused by the optimization
Packit ea1746
  // algorithm and the various linear solvers.
Packit ea1746
  //
Packit ea1746
  // It is expected that the classes implementing this interface will be aware
Packit ea1746
  // of their client's requirements for the kind of sparse matrix storage and
Packit ea1746
  // layout that is needed for an efficient implementation. For example
Packit ea1746
  // CompressedRowOptimizationProblem creates a compressed row representation of
Packit ea1746
  // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem
Packit ea1746
  // creates a BlockSparseMatrix representation of the jacobian for use in the
Packit ea1746
  // Schur complement based methods.
Packit ea1746
  virtual SparseMatrix* CreateJacobian() const = 0;
Packit ea1746
Packit ea1746
Packit ea1746
  // Options struct to control Evaluator::Evaluate;
Packit ea1746
  struct EvaluateOptions {
Packit ea1746
    EvaluateOptions()
Packit ea1746
        : apply_loss_function(true) {
Packit ea1746
    }
Packit ea1746
Packit ea1746
    // If false, the loss function correction is not applied to the
Packit ea1746
    // residual blocks.
Packit ea1746
    bool apply_loss_function;
Packit ea1746
  };
Packit ea1746
Packit ea1746
  // Evaluate the cost function for the given state. Returns the cost,
Packit ea1746
  // residuals, and jacobian in the corresponding arguments. Both residuals and
Packit ea1746
  // jacobian are optional; to avoid computing them, pass NULL.
Packit ea1746
  //
Packit ea1746
  // If non-NULL, the Jacobian must have a suitable sparsity pattern; only the
Packit ea1746
  // values array of the jacobian is modified.
Packit ea1746
  //
Packit ea1746
  // state is an array of size NumParameters(), cost is a pointer to a single
Packit ea1746
  // double, and residuals is an array of doubles of size NumResiduals().
Packit ea1746
  virtual bool Evaluate(const EvaluateOptions& evaluate_options,
Packit ea1746
                        const double* state,
Packit ea1746
                        double* cost,
Packit ea1746
                        double* residuals,
Packit ea1746
                        double* gradient,
Packit ea1746
                        SparseMatrix* jacobian) = 0;
Packit ea1746
Packit ea1746
  // Variant of Evaluator::Evaluate where the user wishes to use the
Packit ea1746
  // default EvaluateOptions struct. This is mostly here as a
Packit ea1746
  // convenience method.
Packit ea1746
  bool Evaluate(const double* state,
Packit ea1746
                double* cost,
Packit ea1746
                double* residuals,
Packit ea1746
                double* gradient,
Packit ea1746
                SparseMatrix* jacobian) {
Packit ea1746
    return Evaluate(EvaluateOptions(),
Packit ea1746
                    state,
Packit ea1746
                    cost,
Packit ea1746
                    residuals,
Packit ea1746
                    gradient,
Packit ea1746
                    jacobian);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Make a change delta (of size NumEffectiveParameters()) to state (of size
Packit ea1746
  // NumParameters()) and store the result in state_plus_delta.
Packit ea1746
  //
Packit ea1746
  // In the case that there are no parameterizations used, this is equivalent to
Packit ea1746
  //
Packit ea1746
  //   state_plus_delta[i] = state[i] + delta[i] ;
Packit ea1746
  //
Packit ea1746
  // however, the mapping is more complicated in the case of parameterizations
Packit ea1746
  // like quaternions. This is the same as the "Plus()" operation in
Packit ea1746
  // local_parameterization.h, but operating over the entire state vector for a
Packit ea1746
  // problem.
Packit ea1746
  virtual bool Plus(const double* state,
Packit ea1746
                    const double* delta,
Packit ea1746
                    double* state_plus_delta) const = 0;
Packit ea1746
Packit ea1746
  // The number of parameters in the optimization problem.
Packit ea1746
  virtual int NumParameters() const = 0;
Packit ea1746
Packit ea1746
  // This is the effective number of parameters that the optimizer may adjust.
Packit ea1746
  // This applies when there are parameterizations on some of the parameters.
Packit ea1746
  virtual int NumEffectiveParameters()  const = 0;
Packit ea1746
Packit ea1746
  // The number of residuals in the optimization problem.
Packit ea1746
  virtual int NumResiduals() const = 0;
Packit ea1746
Packit ea1746
  // The following two methods return copies instead of references so
Packit ea1746
  // that the base class implementation does not have to worry about
Packit ea1746
  // life time issues. Further, these calls are not expected to be
Packit ea1746
  // frequent or performance sensitive.
Packit ea1746
  virtual std::map<std::string, int> CallStatistics() const {
Packit ea1746
    return std::map<std::string, int>();
Packit ea1746
  }
Packit ea1746
Packit ea1746
  virtual std::map<std::string, double> TimeStatistics() const {
Packit ea1746
    return std::map<std::string, double>();
Packit ea1746
  }
Packit ea1746
};
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres
Packit ea1746
Packit ea1746
#endif  // CERES_INTERNAL_EVALUATOR_H_