Blame internal/ceres/dogleg_strategy_test.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: moll.markus@arcor.de (Markus Moll)
Packit ea1746
Packit ea1746
#include <limits>
Packit ea1746
#include "ceres/internal/eigen.h"
Packit ea1746
#include "ceres/internal/scoped_ptr.h"
Packit ea1746
#include "ceres/dense_qr_solver.h"
Packit ea1746
#include "ceres/dogleg_strategy.h"
Packit ea1746
#include "ceres/linear_solver.h"
Packit ea1746
#include "ceres/trust_region_strategy.h"
Packit ea1746
#include "glog/logging.h"
Packit ea1746
#include "gtest/gtest.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
namespace {
Packit ea1746
Packit ea1746
class Fixture : public testing::Test {
Packit ea1746
 protected:
Packit ea1746
  scoped_ptr<DenseSparseMatrix> jacobian_;
Packit ea1746
  Vector residual_;
Packit ea1746
  Vector x_;
Packit ea1746
  TrustRegionStrategy::Options options_;
Packit ea1746
};
Packit ea1746
Packit ea1746
// A test problem where
Packit ea1746
//
Packit ea1746
//   J^T J = Q diag([1 2 4 8 16 32]) Q^T
Packit ea1746
//
Packit ea1746
// where Q is a randomly chosen orthonormal basis of R^6.
Packit ea1746
// The residual is chosen so that the minimum of the quadratic function is
Packit ea1746
// at (1, 1, 1, 1, 1, 1). It is therefore at a distance of sqrt(6) ~ 2.45
Packit ea1746
// from the origin.
Packit ea1746
class DoglegStrategyFixtureEllipse : public Fixture {
Packit ea1746
 protected:
Packit ea1746
  virtual void SetUp() {
Packit ea1746
    Matrix basis(6, 6);
Packit ea1746
    // The following lines exceed 80 characters for better readability.
Packit ea1746
    basis << -0.1046920933796121, -0.7449367449921986, -0.4190744502875876, -0.4480450716142566,  0.2375351607929440, -0.0363053418882862,  // NOLINT
Packit ea1746
              0.4064975684355914,  0.2681113508511354, -0.7463625494601520, -0.0803264850508117, -0.4463149623021321,  0.0130224954867195,  // NOLINT
Packit ea1746
             -0.5514387729089798,  0.1026621026168657, -0.5008316122125011,  0.5738122212666414,  0.2974664724007106,  0.1296020877535158,  // NOLINT
Packit ea1746
              0.5037835370947156,  0.2668479925183712, -0.1051754618492798, -0.0272739396578799,  0.7947481647088278, -0.1776623363955670,  // NOLINT
Packit ea1746
             -0.4005458426625444,  0.2939330589634109, -0.0682629380550051, -0.2895448882503687, -0.0457239396341685, -0.8139899477847840,  // NOLINT
Packit ea1746
             -0.3247764582762654,  0.4528151365941945, -0.0276683863102816, -0.6155994592510784,  0.1489240599972848,  0.5362574892189350;  // NOLINT
Packit ea1746
Packit ea1746
    Vector Ddiag(6);
Packit ea1746
    Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0;
Packit ea1746
Packit ea1746
    Matrix sqrtD = Ddiag.array().sqrt().matrix().asDiagonal();
Packit ea1746
    Matrix jacobian = sqrtD * basis;
Packit ea1746
    jacobian_.reset(new DenseSparseMatrix(jacobian));
Packit ea1746
Packit ea1746
    Vector minimum(6);
Packit ea1746
    minimum << 1.0, 1.0, 1.0, 1.0, 1.0, 1.0;
Packit ea1746
    residual_ = -jacobian * minimum;
Packit ea1746
Packit ea1746
    x_.resize(6);
Packit ea1746
    x_.setZero();
Packit ea1746
Packit ea1746
    options_.min_lm_diagonal = 1.0;
Packit ea1746
    options_.max_lm_diagonal = 1.0;
Packit ea1746
  }
Packit ea1746
};
Packit ea1746
Packit ea1746
// A test problem where
Packit ea1746
//
Packit ea1746
//   J^T J = diag([1 2 4 8 16 32]) .
Packit ea1746
//
Packit ea1746
// The residual is chosen so that the minimum of the quadratic function is
Packit ea1746
// at (0, 0, 1, 0, 0, 0). It is therefore at a distance of 1 from the origin.
Packit ea1746
// The gradient at the origin points towards the global minimum.
Packit ea1746
class DoglegStrategyFixtureValley : public Fixture {
Packit ea1746
 protected:
Packit ea1746
  virtual void SetUp() {
Packit ea1746
    Vector Ddiag(6);
Packit ea1746
    Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0;
Packit ea1746
Packit ea1746
    Matrix jacobian = Ddiag.asDiagonal();
Packit ea1746
    jacobian_.reset(new DenseSparseMatrix(jacobian));
Packit ea1746
Packit ea1746
    Vector minimum(6);
Packit ea1746
    minimum << 0.0, 0.0, 1.0, 0.0, 0.0, 0.0;
Packit ea1746
    residual_ = -jacobian * minimum;
Packit ea1746
Packit ea1746
    x_.resize(6);
Packit ea1746
    x_.setZero();
Packit ea1746
Packit ea1746
    options_.min_lm_diagonal = 1.0;
Packit ea1746
    options_.max_lm_diagonal = 1.0;
Packit ea1746
  }
Packit ea1746
};
Packit ea1746
Packit ea1746
const double kTolerance = 1e-14;
Packit ea1746
const double kToleranceLoose = 1e-5;
Packit ea1746
const double kEpsilon = std::numeric_limits<double>::epsilon();
Packit ea1746
Packit ea1746
}  // namespace
Packit ea1746
Packit ea1746
// The DoglegStrategy must never return a step that is longer than the current
Packit ea1746
// trust region radius.
Packit ea1746
TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedTraditional) {
Packit ea1746
  scoped_ptr<LinearSolver> linear_solver(
Packit ea1746
      new DenseQRSolver(LinearSolver::Options()));
Packit ea1746
  options_.linear_solver = linear_solver.get();
Packit ea1746
  // The global minimum is at (1, 1, ..., 1), so the distance to it is
Packit ea1746
  // sqrt(6.0).  By restricting the trust region to a radius of 2.0,
Packit ea1746
  // we test if the trust region is actually obeyed.
Packit ea1746
  options_.dogleg_type = TRADITIONAL_DOGLEG;
Packit ea1746
  options_.initial_radius = 2.0;
Packit ea1746
  options_.max_radius = 2.0;
Packit ea1746
Packit ea1746
  DoglegStrategy strategy(options_);
Packit ea1746
  TrustRegionStrategy::PerSolveOptions pso;
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
Packit ea1746
                                                              jacobian_.get(),
Packit ea1746
                                                              residual_.data(),
Packit ea1746
                                                              x_.data());
Packit ea1746
Packit ea1746
  EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
Packit ea1746
  EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon));
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedSubspace) {
Packit ea1746
  scoped_ptr<LinearSolver> linear_solver(
Packit ea1746
      new DenseQRSolver(LinearSolver::Options()));
Packit ea1746
  options_.linear_solver = linear_solver.get();
Packit ea1746
  options_.dogleg_type = SUBSPACE_DOGLEG;
Packit ea1746
  options_.initial_radius = 2.0;
Packit ea1746
  options_.max_radius = 2.0;
Packit ea1746
Packit ea1746
  DoglegStrategy strategy(options_);
Packit ea1746
  TrustRegionStrategy::PerSolveOptions pso;
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
Packit ea1746
                                                              jacobian_.get(),
Packit ea1746
                                                              residual_.data(),
Packit ea1746
                                                              x_.data());
Packit ea1746
Packit ea1746
  EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
Packit ea1746
  EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon));
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST_F(DoglegStrategyFixtureEllipse, CorrectGaussNewtonStep) {
Packit ea1746
  scoped_ptr<LinearSolver> linear_solver(
Packit ea1746
      new DenseQRSolver(LinearSolver::Options()));
Packit ea1746
  options_.linear_solver = linear_solver.get();
Packit ea1746
  options_.dogleg_type = SUBSPACE_DOGLEG;
Packit ea1746
  options_.initial_radius = 10.0;
Packit ea1746
  options_.max_radius = 10.0;
Packit ea1746
Packit ea1746
  DoglegStrategy strategy(options_);
Packit ea1746
  TrustRegionStrategy::PerSolveOptions pso;
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
Packit ea1746
                                                              jacobian_.get(),
Packit ea1746
                                                              residual_.data(),
Packit ea1746
                                                              x_.data());
Packit ea1746
Packit ea1746
  EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
Packit ea1746
  EXPECT_NEAR(x_(0), 1.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(1), 1.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(2), 1.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(3), 1.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(4), 1.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(5), 1.0, kToleranceLoose);
Packit ea1746
}
Packit ea1746
Packit ea1746
// Test if the subspace basis is a valid orthonormal basis of the space spanned
Packit ea1746
// by the gradient and the Gauss-Newton point.
Packit ea1746
TEST_F(DoglegStrategyFixtureEllipse, ValidSubspaceBasis) {
Packit ea1746
  scoped_ptr<LinearSolver> linear_solver(
Packit ea1746
      new DenseQRSolver(LinearSolver::Options()));
Packit ea1746
  options_.linear_solver = linear_solver.get();
Packit ea1746
  options_.dogleg_type = SUBSPACE_DOGLEG;
Packit ea1746
  options_.initial_radius = 2.0;
Packit ea1746
  options_.max_radius = 2.0;
Packit ea1746
Packit ea1746
  DoglegStrategy strategy(options_);
Packit ea1746
  TrustRegionStrategy::PerSolveOptions pso;
Packit ea1746
Packit ea1746
  strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
Packit ea1746
Packit ea1746
  // Check if the basis is orthonormal.
Packit ea1746
  const Matrix basis = strategy.subspace_basis();
Packit ea1746
  EXPECT_NEAR(basis.col(0).norm(), 1.0, kTolerance);
Packit ea1746
  EXPECT_NEAR(basis.col(1).norm(), 1.0, kTolerance);
Packit ea1746
  EXPECT_NEAR(basis.col(0).dot(basis.col(1)), 0.0, kTolerance);
Packit ea1746
Packit ea1746
  // Check if the gradient projects onto itself.
Packit ea1746
  const Vector gradient = strategy.gradient();
Packit ea1746
  EXPECT_NEAR((gradient - basis*(basis.transpose()*gradient)).norm(),
Packit ea1746
              0.0,
Packit ea1746
              kTolerance);
Packit ea1746
Packit ea1746
  // Check if the Gauss-Newton point projects onto itself.
Packit ea1746
  const Vector gn = strategy.gauss_newton_step();
Packit ea1746
  EXPECT_NEAR((gn - basis*(basis.transpose()*gn)).norm(),
Packit ea1746
              0.0,
Packit ea1746
              kTolerance);
Packit ea1746
}
Packit ea1746
Packit ea1746
// Test if the step is correct if the gradient and the Gauss-Newton step point
Packit ea1746
// in the same direction and the Gauss-Newton step is outside the trust region,
Packit ea1746
// i.e. the trust region is active.
Packit ea1746
TEST_F(DoglegStrategyFixtureValley, CorrectStepLocalOptimumAlongGradient) {
Packit ea1746
  scoped_ptr<LinearSolver> linear_solver(
Packit ea1746
      new DenseQRSolver(LinearSolver::Options()));
Packit ea1746
  options_.linear_solver = linear_solver.get();
Packit ea1746
  options_.dogleg_type = SUBSPACE_DOGLEG;
Packit ea1746
  options_.initial_radius = 0.25;
Packit ea1746
  options_.max_radius = 0.25;
Packit ea1746
Packit ea1746
  DoglegStrategy strategy(options_);
Packit ea1746
  TrustRegionStrategy::PerSolveOptions pso;
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
Packit ea1746
                                                              jacobian_.get(),
Packit ea1746
                                                              residual_.data(),
Packit ea1746
                                                              x_.data());
Packit ea1746
Packit ea1746
  EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
Packit ea1746
  EXPECT_NEAR(x_(0), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(1), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(2), options_.initial_radius, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(3), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(4), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(5), 0.0, kToleranceLoose);
Packit ea1746
}
Packit ea1746
Packit ea1746
// Test if the step is correct if the gradient and the Gauss-Newton step point
Packit ea1746
// in the same direction and the Gauss-Newton step is inside the trust region,
Packit ea1746
// i.e. the trust region is inactive.
Packit ea1746
TEST_F(DoglegStrategyFixtureValley, CorrectStepGlobalOptimumAlongGradient) {
Packit ea1746
  scoped_ptr<LinearSolver> linear_solver(
Packit ea1746
      new DenseQRSolver(LinearSolver::Options()));
Packit ea1746
  options_.linear_solver = linear_solver.get();
Packit ea1746
  options_.dogleg_type = SUBSPACE_DOGLEG;
Packit ea1746
  options_.initial_radius = 2.0;
Packit ea1746
  options_.max_radius = 2.0;
Packit ea1746
Packit ea1746
  DoglegStrategy strategy(options_);
Packit ea1746
  TrustRegionStrategy::PerSolveOptions pso;
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
Packit ea1746
                                                              jacobian_.get(),
Packit ea1746
                                                              residual_.data(),
Packit ea1746
                                                              x_.data());
Packit ea1746
Packit ea1746
  EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
Packit ea1746
  EXPECT_NEAR(x_(0), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(1), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(2), 1.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(3), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(4), 0.0, kToleranceLoose);
Packit ea1746
  EXPECT_NEAR(x_(5), 0.0, kToleranceLoose);
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres