Blame internal/ceres/corrector_test.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/corrector.h"
Packit ea1746
Packit ea1746
#include <algorithm>
Packit ea1746
#include <cmath>
Packit ea1746
#include <cstring>
Packit ea1746
#include <cstdlib>
Packit ea1746
#include "gtest/gtest.h"
Packit ea1746
#include "ceres/random.h"
Packit ea1746
#include "ceres/internal/eigen.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
// If rho[1] is zero, the Corrector constructor should crash.
Packit ea1746
TEST(Corrector, ZeroGradientDeathTest) {
Packit ea1746
  const double kRho[] = {0.0, 0.0, 1.0};
Packit ea1746
  EXPECT_DEATH_IF_SUPPORTED({Corrector c(1.0, kRho);},
Packit ea1746
               ".*");
Packit ea1746
}
Packit ea1746
Packit ea1746
// If rho[1] is negative, the Corrector constructor should crash.
Packit ea1746
TEST(Corrector, NegativeGradientDeathTest) {
Packit ea1746
  const double kRho[] = {0.0, -0.1, 1.0};
Packit ea1746
  EXPECT_DEATH_IF_SUPPORTED({Corrector c(1.0, kRho);},
Packit ea1746
               ".*");
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(Corrector, ScalarCorrection) {
Packit ea1746
  double residuals = sqrt(3.0);
Packit ea1746
  double jacobian = 10.0;
Packit ea1746
  double sq_norm = residuals * residuals;
Packit ea1746
Packit ea1746
  const double kRho[] = {sq_norm, 0.1, -0.01};
Packit ea1746
Packit ea1746
  // In light of the rho'' < 0 clamping now implemented in
Packit ea1746
  // corrector.cc, alpha = 0 whenever rho'' < 0.
Packit ea1746
  const double kAlpha = 0.0;
Packit ea1746
Packit ea1746
  // Thus the expected value of the residual is
Packit ea1746
  // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha).
Packit ea1746
  const double kExpectedResidual =
Packit ea1746
      residuals * sqrt(kRho[1]) / (1 - kAlpha);
Packit ea1746
Packit ea1746
  // The jacobian in this case will be
Packit ea1746
  // sqrt(kRho[1]) * (1 - kAlpha) * jacobian.
Packit ea1746
  const double kExpectedJacobian = sqrt(kRho[1]) * (1 - kAlpha) * jacobian;
Packit ea1746
Packit ea1746
  Corrector c(sq_norm, kRho);
Packit ea1746
  c.CorrectJacobian(1.0, 1.0, &residuals, &jacobian);
Packit ea1746
  c.CorrectResiduals(1.0, &residuals);
Packit ea1746
Packit ea1746
  ASSERT_NEAR(residuals, kExpectedResidual, 1e-6);
Packit ea1746
  ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6);
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(Corrector, ScalarCorrectionZeroResidual) {
Packit ea1746
  double residuals = 0.0;
Packit ea1746
  double jacobian = 10.0;
Packit ea1746
  double sq_norm = residuals * residuals;
Packit ea1746
Packit ea1746
  const double kRho[] = {0.0, 0.1, -0.01};
Packit ea1746
  Corrector c(sq_norm, kRho);
Packit ea1746
Packit ea1746
  // The alpha equation is
Packit ea1746
  // 1/2 alpha^2 - alpha + 0.0 = 0.
Packit ea1746
  // i.e. alpha = 1.0 - sqrt(1.0).
Packit ea1746
  //      alpha = 0.0.
Packit ea1746
  // Thus the expected value of the residual is
Packit ea1746
  // residual[i] * sqrt(kRho[1])
Packit ea1746
  const double kExpectedResidual = residuals * sqrt(kRho[1]);
Packit ea1746
Packit ea1746
  // The jacobian in this case will be
Packit ea1746
  // sqrt(kRho[1]) * jacobian.
Packit ea1746
  const double kExpectedJacobian = sqrt(kRho[1]) * jacobian;
Packit ea1746
Packit ea1746
  c.CorrectJacobian(1, 1, &residuals, &jacobian);
Packit ea1746
  c.CorrectResiduals(1, &residuals);
Packit ea1746
Packit ea1746
  ASSERT_NEAR(residuals, kExpectedResidual, 1e-6);
Packit ea1746
  ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6);
Packit ea1746
}
Packit ea1746
Packit ea1746
// Scaling behaviour for one dimensional functions.
Packit ea1746
TEST(Corrector, ScalarCorrectionAlphaClamped) {
Packit ea1746
  double residuals = sqrt(3.0);
Packit ea1746
  double jacobian = 10.0;
Packit ea1746
  double sq_norm = residuals * residuals;
Packit ea1746
Packit ea1746
  const double kRho[] = {3, 0.1, -0.1};
Packit ea1746
Packit ea1746
  // rho[2] < 0 -> alpha = 0.0
Packit ea1746
  const double kAlpha = 0.0;
Packit ea1746
Packit ea1746
  // Thus the expected value of the residual is
Packit ea1746
  // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha).
Packit ea1746
  const double kExpectedResidual =
Packit ea1746
      residuals * sqrt(kRho[1]) / (1.0 - kAlpha);
Packit ea1746
Packit ea1746
  // The jacobian in this case will be scaled by
Packit ea1746
  // sqrt(rho[1]) * (1 - alpha) * J.
Packit ea1746
  const double kExpectedJacobian = sqrt(kRho[1]) *
Packit ea1746
      (1.0 - kAlpha) * jacobian;
Packit ea1746
Packit ea1746
  Corrector c(sq_norm, kRho);
Packit ea1746
  c.CorrectJacobian(1, 1, &residuals, &jacobian);
Packit ea1746
  c.CorrectResiduals(1, &residuals);
Packit ea1746
Packit ea1746
  ASSERT_NEAR(residuals, kExpectedResidual, 1e-6);
Packit ea1746
  ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6);
Packit ea1746
}
Packit ea1746
Packit ea1746
// Test that the corrected multidimensional residual and jacobians
Packit ea1746
// match the expected values and the resulting modified normal
Packit ea1746
// equations match the robustified gauss newton approximation.
Packit ea1746
TEST(Corrector, MultidimensionalGaussNewtonApproximation) {
Packit ea1746
  double residuals[3];
Packit ea1746
  double jacobian[2 * 3];
Packit ea1746
  double rho[3];
Packit ea1746
Packit ea1746
  // Eigen matrix references for linear algebra.
Packit ea1746
  MatrixRef jac(jacobian, 3, 2);
Packit ea1746
  VectorRef res(residuals, 3);
Packit ea1746
Packit ea1746
  // Ground truth values of the modified jacobian and residuals.
Packit ea1746
  Matrix g_jac(3, 2);
Packit ea1746
  Vector g_res(3);
Packit ea1746
Packit ea1746
  // Ground truth values of the robustified Gauss-Newton
Packit ea1746
  // approximation.
Packit ea1746
  Matrix g_hess(2, 2);
Packit ea1746
  Vector g_grad(2);
Packit ea1746
Packit ea1746
  // Corrected hessian and gradient implied by the modified jacobian
Packit ea1746
  // and hessians.
Packit ea1746
  Matrix c_hess(2, 2);
Packit ea1746
  Vector c_grad(2);
Packit ea1746
Packit ea1746
  srand(5);
Packit ea1746
  for (int iter = 0; iter < 10000; ++iter) {
Packit ea1746
    // Initialize the jacobian and residual.
Packit ea1746
    for (int i = 0; i < 2 * 3; ++i)
Packit ea1746
      jacobian[i] = RandDouble();
Packit ea1746
    for (int i = 0; i < 3; ++i)
Packit ea1746
      residuals[i] = RandDouble();
Packit ea1746
Packit ea1746
    const double sq_norm = res.dot(res);
Packit ea1746
Packit ea1746
    rho[0] = sq_norm;
Packit ea1746
    rho[1] = RandDouble();
Packit ea1746
    rho[2] = 2.0 * RandDouble() - 1.0;
Packit ea1746
Packit ea1746
    // If rho[2] > 0, then the curvature correction to the correction
Packit ea1746
    // and the gauss newton approximation will match. Otherwise, we
Packit ea1746
    // will clamp alpha to 0.
Packit ea1746
Packit ea1746
    const double kD = 1 + 2 * rho[2] / rho[1] * sq_norm;
Packit ea1746
    const double kAlpha = (rho[2] > 0.0) ? 1 - sqrt(kD) : 0.0;
Packit ea1746
Packit ea1746
    // Ground truth values.
Packit ea1746
    g_res = sqrt(rho[1]) / (1.0 - kAlpha) * res;
Packit ea1746
    g_jac = sqrt(rho[1]) * (jac - kAlpha / sq_norm *
Packit ea1746
                            res * res.transpose() * jac);
Packit ea1746
Packit ea1746
    g_grad = rho[1] * jac.transpose() * res;
Packit ea1746
    g_hess = rho[1] * jac.transpose() * jac +
Packit ea1746
        2.0 * rho[2] * jac.transpose() * res * res.transpose() * jac;
Packit ea1746
Packit ea1746
    Corrector c(sq_norm, rho);
Packit ea1746
    c.CorrectJacobian(3, 2, residuals, jacobian);
Packit ea1746
    c.CorrectResiduals(3, residuals);
Packit ea1746
Packit ea1746
    // Corrected gradient and hessian.
Packit ea1746
    c_grad  = jac.transpose() * res;
Packit ea1746
    c_hess = jac.transpose() * jac;
Packit ea1746
Packit ea1746
    ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10);
Packit ea1746
    ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10);
Packit ea1746
Packit ea1746
    ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10);
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(Corrector, MultidimensionalGaussNewtonApproximationZeroResidual) {
Packit ea1746
  double residuals[3];
Packit ea1746
  double jacobian[2 * 3];
Packit ea1746
  double rho[3];
Packit ea1746
Packit ea1746
  // Eigen matrix references for linear algebra.
Packit ea1746
  MatrixRef jac(jacobian, 3, 2);
Packit ea1746
  VectorRef res(residuals, 3);
Packit ea1746
Packit ea1746
  // Ground truth values of the modified jacobian and residuals.
Packit ea1746
  Matrix g_jac(3, 2);
Packit ea1746
  Vector g_res(3);
Packit ea1746
Packit ea1746
  // Ground truth values of the robustified Gauss-Newton
Packit ea1746
  // approximation.
Packit ea1746
  Matrix g_hess(2, 2);
Packit ea1746
  Vector g_grad(2);
Packit ea1746
Packit ea1746
  // Corrected hessian and gradient implied by the modified jacobian
Packit ea1746
  // and hessians.
Packit ea1746
  Matrix c_hess(2, 2);
Packit ea1746
  Vector c_grad(2);
Packit ea1746
Packit ea1746
  srand(5);
Packit ea1746
  for (int iter = 0; iter < 10000; ++iter) {
Packit ea1746
    // Initialize the jacobian.
Packit ea1746
    for (int i = 0; i < 2 * 3; ++i)
Packit ea1746
      jacobian[i] = RandDouble();
Packit ea1746
Packit ea1746
    // Zero residuals
Packit ea1746
    res.setZero();
Packit ea1746
Packit ea1746
    const double sq_norm = res.dot(res);
Packit ea1746
Packit ea1746
    rho[0] = sq_norm;
Packit ea1746
    rho[1] = RandDouble();
Packit ea1746
    rho[2] = 2 * RandDouble() - 1.0;
Packit ea1746
Packit ea1746
    // Ground truth values.
Packit ea1746
    g_res = sqrt(rho[1]) * res;
Packit ea1746
    g_jac = sqrt(rho[1]) * jac;
Packit ea1746
Packit ea1746
    g_grad = rho[1] * jac.transpose() * res;
Packit ea1746
    g_hess = rho[1] * jac.transpose() * jac +
Packit ea1746
        2.0 * rho[2] * jac.transpose() * res * res.transpose() * jac;
Packit ea1746
Packit ea1746
    Corrector c(sq_norm, rho);
Packit ea1746
    c.CorrectJacobian(3, 2, residuals, jacobian);
Packit ea1746
    c.CorrectResiduals(3, residuals);
Packit ea1746
Packit ea1746
    // Corrected gradient and hessian.
Packit ea1746
    c_grad = jac.transpose() * res;
Packit ea1746
    c_hess = jac.transpose() * jac;
Packit ea1746
Packit ea1746
    ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10);
Packit ea1746
    ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10);
Packit ea1746
Packit ea1746
    ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10);
Packit ea1746
    ASSERT_NEAR((g_hess - c_hess).norm(), 0.0, 1e-10);
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres