Blame internal/ceres/coordinate_descent_minimizer.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/coordinate_descent_minimizer.h"
Packit ea1746
Packit ea1746
#ifdef CERES_USE_OPENMP
Packit ea1746
#include <omp.h>
Packit ea1746
#endif
Packit ea1746
Packit ea1746
#include <iterator>
Packit ea1746
#include <numeric>
Packit ea1746
#include <vector>
Packit ea1746
#include "ceres/evaluator.h"
Packit ea1746
#include "ceres/linear_solver.h"
Packit ea1746
#include "ceres/minimizer.h"
Packit ea1746
#include "ceres/parameter_block.h"
Packit ea1746
#include "ceres/parameter_block_ordering.h"
Packit ea1746
#include "ceres/problem_impl.h"
Packit ea1746
#include "ceres/program.h"
Packit ea1746
#include "ceres/residual_block.h"
Packit ea1746
#include "ceres/solver.h"
Packit ea1746
#include "ceres/trust_region_minimizer.h"
Packit ea1746
#include "ceres/trust_region_strategy.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
using std::map;
Packit ea1746
using std::max;
Packit ea1746
using std::min;
Packit ea1746
using std::set;
Packit ea1746
using std::string;
Packit ea1746
using std::vector;
Packit ea1746
Packit ea1746
CoordinateDescentMinimizer::~CoordinateDescentMinimizer() {
Packit ea1746
}
Packit ea1746
Packit ea1746
bool CoordinateDescentMinimizer::Init(
Packit ea1746
    const Program& program,
Packit ea1746
    const ProblemImpl::ParameterMap& parameter_map,
Packit ea1746
    const ParameterBlockOrdering& ordering,
Packit ea1746
    string* error) {
Packit ea1746
  parameter_blocks_.clear();
Packit ea1746
  independent_set_offsets_.clear();
Packit ea1746
  independent_set_offsets_.push_back(0);
Packit ea1746
Packit ea1746
  // Serialize the OrderedGroups into a vector of parameter block
Packit ea1746
  // offsets for parallel access.
Packit ea1746
  map<ParameterBlock*, int> parameter_block_index;
Packit ea1746
  map<int, set<double*> > group_to_elements = ordering.group_to_elements();
Packit ea1746
  for (map<int, set<double*> >::const_iterator it = group_to_elements.begin();
Packit ea1746
       it != group_to_elements.end();
Packit ea1746
       ++it) {
Packit ea1746
    for (set<double*>::const_iterator ptr_it = it->second.begin();
Packit ea1746
         ptr_it != it->second.end();
Packit ea1746
         ++ptr_it) {
Packit ea1746
      parameter_blocks_.push_back(parameter_map.find(*ptr_it)->second);
Packit ea1746
      parameter_block_index[parameter_blocks_.back()] =
Packit ea1746
          parameter_blocks_.size() - 1;
Packit ea1746
    }
Packit ea1746
    independent_set_offsets_.push_back(
Packit ea1746
        independent_set_offsets_.back() + it->second.size());
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // The ordering does not have to contain all parameter blocks, so
Packit ea1746
  // assign zero offsets/empty independent sets to these parameter
Packit ea1746
  // blocks.
Packit ea1746
  const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks();
Packit ea1746
  for (int i = 0; i < parameter_blocks.size(); ++i) {
Packit ea1746
    if (!ordering.IsMember(parameter_blocks[i]->mutable_user_state())) {
Packit ea1746
      parameter_blocks_.push_back(parameter_blocks[i]);
Packit ea1746
      independent_set_offsets_.push_back(independent_set_offsets_.back());
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Compute the set of residual blocks that depend on each parameter
Packit ea1746
  // block.
Packit ea1746
  residual_blocks_.resize(parameter_block_index.size());
Packit ea1746
  const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
Packit ea1746
  for (int i = 0; i < residual_blocks.size(); ++i) {
Packit ea1746
    ResidualBlock* residual_block = residual_blocks[i];
Packit ea1746
    const int num_parameter_blocks = residual_block->NumParameterBlocks();
Packit ea1746
    for (int j = 0; j < num_parameter_blocks; ++j) {
Packit ea1746
      ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
Packit ea1746
      const map<ParameterBlock*, int>::const_iterator it =
Packit ea1746
          parameter_block_index.find(parameter_block);
Packit ea1746
      if (it != parameter_block_index.end()) {
Packit ea1746
        residual_blocks_[it->second].push_back(residual_block);
Packit ea1746
      }
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  evaluator_options_.linear_solver_type = DENSE_QR;
Packit ea1746
  evaluator_options_.num_eliminate_blocks = 0;
Packit ea1746
  evaluator_options_.num_threads = 1;
Packit ea1746
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
void CoordinateDescentMinimizer::Minimize(
Packit ea1746
    const Minimizer::Options& options,
Packit ea1746
    double* parameters,
Packit ea1746
    Solver::Summary* summary) {
Packit ea1746
  // Set the state and mark all parameter blocks constant.
Packit ea1746
  for (int i = 0; i < parameter_blocks_.size(); ++i) {
Packit ea1746
    ParameterBlock* parameter_block = parameter_blocks_[i];
Packit ea1746
    parameter_block->SetState(parameters + parameter_block->state_offset());
Packit ea1746
    parameter_block->SetConstant();
Packit ea1746
  }
Packit ea1746
Packit ea1746
  scoped_array<LinearSolver*> linear_solvers(
Packit ea1746
      new LinearSolver*[options.num_threads]);
Packit ea1746
Packit ea1746
  LinearSolver::Options linear_solver_options;
Packit ea1746
  linear_solver_options.type = DENSE_QR;
Packit ea1746
Packit ea1746
  for (int i = 0; i < options.num_threads; ++i) {
Packit ea1746
    linear_solvers[i] = LinearSolver::Create(linear_solver_options);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  for (int i = 0; i < independent_set_offsets_.size() - 1; ++i) {
Packit ea1746
    const int num_problems =
Packit ea1746
        independent_set_offsets_[i + 1] - independent_set_offsets_[i];
Packit ea1746
    // No point paying the price for an OpemMP call if the set is of
Packit ea1746
    // size zero.
Packit ea1746
    if (num_problems == 0) {
Packit ea1746
      continue;
Packit ea1746
    }
Packit ea1746
Packit ea1746
#ifdef CERES_USE_OPENMP
Packit ea1746
    const int num_inner_iteration_threads =
Packit ea1746
        min(options.num_threads, num_problems);
Packit ea1746
    evaluator_options_.num_threads =
Packit ea1746
        max(1, options.num_threads / num_inner_iteration_threads);
Packit ea1746
Packit ea1746
    // The parameter blocks in each independent set can be optimized
Packit ea1746
    // in parallel, since they do not co-occur in any residual block.
Packit ea1746
#pragma omp parallel for num_threads(num_inner_iteration_threads)
Packit ea1746
#endif
Packit ea1746
    for (int j = independent_set_offsets_[i];
Packit ea1746
         j < independent_set_offsets_[i + 1];
Packit ea1746
         ++j) {
Packit ea1746
#ifdef CERES_USE_OPENMP
Packit ea1746
      int thread_id = omp_get_thread_num();
Packit ea1746
#else
Packit ea1746
      int thread_id = 0;
Packit ea1746
#endif
Packit ea1746
Packit ea1746
      ParameterBlock* parameter_block = parameter_blocks_[j];
Packit ea1746
      const int old_index = parameter_block->index();
Packit ea1746
      const int old_delta_offset = parameter_block->delta_offset();
Packit ea1746
      parameter_block->SetVarying();
Packit ea1746
      parameter_block->set_index(0);
Packit ea1746
      parameter_block->set_delta_offset(0);
Packit ea1746
Packit ea1746
      Program inner_program;
Packit ea1746
      inner_program.mutable_parameter_blocks()->push_back(parameter_block);
Packit ea1746
      *inner_program.mutable_residual_blocks() = residual_blocks_[j];
Packit ea1746
Packit ea1746
      // TODO(sameeragarwal): Better error handling. Right now we
Packit ea1746
      // assume that this is not going to lead to problems of any
Packit ea1746
      // sort. Basically we should be checking for numerical failure
Packit ea1746
      // of some sort.
Packit ea1746
      //
Packit ea1746
      // On the other hand, if the optimization is a failure, that in
Packit ea1746
      // some ways is fine, since it won't change the parameters and
Packit ea1746
      // we are fine.
Packit ea1746
      Solver::Summary inner_summary;
Packit ea1746
      Solve(&inner_program,
Packit ea1746
            linear_solvers[thread_id],
Packit ea1746
            parameters + parameter_block->state_offset(),
Packit ea1746
            &inner_summary);
Packit ea1746
Packit ea1746
      parameter_block->set_index(old_index);
Packit ea1746
      parameter_block->set_delta_offset(old_delta_offset);
Packit ea1746
      parameter_block->SetState(parameters + parameter_block->state_offset());
Packit ea1746
      parameter_block->SetConstant();
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  for (int i =  0; i < parameter_blocks_.size(); ++i) {
Packit ea1746
    parameter_blocks_[i]->SetVarying();
Packit ea1746
  }
Packit ea1746
Packit ea1746
  for (int i = 0; i < options.num_threads; ++i) {
Packit ea1746
    delete linear_solvers[i];
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
// Solve the optimization problem for one parameter block.
Packit ea1746
void CoordinateDescentMinimizer::Solve(Program* program,
Packit ea1746
                                       LinearSolver* linear_solver,
Packit ea1746
                                       double* parameter,
Packit ea1746
                                       Solver::Summary* summary) {
Packit ea1746
  *summary = Solver::Summary();
Packit ea1746
  summary->initial_cost = 0.0;
Packit ea1746
  summary->fixed_cost = 0.0;
Packit ea1746
  summary->final_cost = 0.0;
Packit ea1746
  string error;
Packit ea1746
Packit ea1746
  Minimizer::Options minimizer_options;
Packit ea1746
  minimizer_options.evaluator.reset(
Packit ea1746
      CHECK_NOTNULL(Evaluator::Create(evaluator_options_, program,  &error)));
Packit ea1746
  minimizer_options.jacobian.reset(
Packit ea1746
      CHECK_NOTNULL(minimizer_options.evaluator->CreateJacobian()));
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Options trs_options;
Packit ea1746
  trs_options.linear_solver = linear_solver;
Packit ea1746
  minimizer_options.trust_region_strategy.reset(
Packit ea1746
      CHECK_NOTNULL(TrustRegionStrategy::Create(trs_options)));
Packit ea1746
  minimizer_options.is_silent = true;
Packit ea1746
Packit ea1746
  TrustRegionMinimizer minimizer;
Packit ea1746
  minimizer.Minimize(minimizer_options, parameter, summary);
Packit ea1746
}
Packit ea1746
Packit ea1746
bool CoordinateDescentMinimizer::IsOrderingValid(
Packit ea1746
    const Program& program,
Packit ea1746
    const ParameterBlockOrdering& ordering,
Packit ea1746
    string* message) {
Packit ea1746
  const map<int, set<double*> >& group_to_elements =
Packit ea1746
      ordering.group_to_elements();
Packit ea1746
Packit ea1746
  // Verify that each group is an independent set
Packit ea1746
  map<int, set<double*> >::const_iterator it = group_to_elements.begin();
Packit ea1746
  for (; it != group_to_elements.end(); ++it) {
Packit ea1746
    if (!program.IsParameterBlockSetIndependent(it->second)) {
Packit ea1746
      *message =
Packit ea1746
          StringPrintf("The user-provided "
Packit ea1746
                       "parameter_blocks_for_inner_iterations does not "
Packit ea1746
                       "form an independent set. Group Id: %d", it->first);
Packit ea1746
      return false;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Find a recursive decomposition of the Hessian matrix as a set
Packit ea1746
// of independent sets of decreasing size and invert it. This
Packit ea1746
// seems to work better in practice, i.e., Cameras before
Packit ea1746
// points.
Packit ea1746
ParameterBlockOrdering* CoordinateDescentMinimizer::CreateOrdering(
Packit ea1746
    const Program& program) {
Packit ea1746
  scoped_ptr<ParameterBlockOrdering> ordering(new ParameterBlockOrdering);
Packit ea1746
  ComputeRecursiveIndependentSetOrdering(program, ordering.get());
Packit ea1746
  ordering->Reverse();
Packit ea1746
  return ordering.release();
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres