Blame internal/ceres/canonical_views_clustering.h

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
//
Packit ea1746
// An implementation of the Canonical Views clustering algorithm from
Packit ea1746
// "Scene Summarization for Online Image Collections", Ian Simon, Noah
Packit ea1746
// Snavely, Steven M. Seitz, ICCV 2007.
Packit ea1746
//
Packit ea1746
// More details can be found at
Packit ea1746
// http://grail.cs.washington.edu/projects/canonview/
Packit ea1746
//
Packit ea1746
// Ceres uses this algorithm to perform view clustering for
Packit ea1746
// constructing visibility based preconditioners.
Packit ea1746
Packit ea1746
#ifndef CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
Packit ea1746
#define CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
Packit ea1746
Packit ea1746
#include <vector>
Packit ea1746
Packit ea1746
#include "ceres/collections_port.h"
Packit ea1746
#include "ceres/graph.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
struct CanonicalViewsClusteringOptions;
Packit ea1746
Packit ea1746
// Compute a partitioning of the vertices of the graph using the
Packit ea1746
// canonical views clustering algorithm.
Packit ea1746
//
Packit ea1746
// In the following we will use the terms vertices and views
Packit ea1746
// interchangably.  Given a weighted Graph G(V,E), the canonical views
Packit ea1746
// of G are the the set of vertices that best "summarize" the content
Packit ea1746
// of the graph. If w_ij i s the weight connecting the vertex i to
Packit ea1746
// vertex j, and C is the set of canonical views. Then the objective
Packit ea1746
// of the canonical views algorithm is
Packit ea1746
//
Packit ea1746
//   E[C] = sum_[i in V] max_[j in C] w_ij
Packit ea1746
//          - size_penalty_weight * |C|
Packit ea1746
//          - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
Packit ea1746
//
Packit ea1746
// alpha is the size penalty that penalizes large number of canonical
Packit ea1746
// views.
Packit ea1746
//
Packit ea1746
// beta is the similarity penalty that penalizes canonical views that
Packit ea1746
// are too similar to other canonical views.
Packit ea1746
//
Packit ea1746
// Thus the canonical views algorithm tries to find a canonical view
Packit ea1746
// for each vertex in the graph which best explains it, while trying
Packit ea1746
// to minimize the number of canonical views and the overlap between
Packit ea1746
// them.
Packit ea1746
//
Packit ea1746
// We further augment the above objective function by allowing for per
Packit ea1746
// vertex weights, higher weights indicating a higher preference for
Packit ea1746
// being chosen as a canonical view. Thus if w_i is the vertex weight
Packit ea1746
// for vertex i, the objective function is then
Packit ea1746
//
Packit ea1746
//   E[C] = sum_[i in V] max_[j in C] w_ij
Packit ea1746
//          - size_penalty_weight * |C|
Packit ea1746
//          - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
Packit ea1746
//          + view_score_weight * sum_[i in C] w_i
Packit ea1746
//
Packit ea1746
// centers will contain the vertices that are the identified
Packit ea1746
// as the canonical views/cluster centers, and membership is a map
Packit ea1746
// from vertices to cluster_ids. The i^th cluster center corresponds
Packit ea1746
// to the i^th cluster.
Packit ea1746
//
Packit ea1746
// It is possible depending on the configuration of the clustering
Packit ea1746
// algorithm that some of the vertices may not be assigned to any
Packit ea1746
// cluster. In this case they are assigned to a cluster with id = -1;
Packit ea1746
void ComputeCanonicalViewsClustering(
Packit ea1746
    const CanonicalViewsClusteringOptions& options,
Packit ea1746
    const WeightedGraph<int>& graph,
Packit ea1746
    std::vector<int>* centers,
Packit ea1746
    HashMap<int, int>* membership);
Packit ea1746
Packit ea1746
struct CanonicalViewsClusteringOptions {
Packit ea1746
  CanonicalViewsClusteringOptions()
Packit ea1746
      : min_views(3),
Packit ea1746
        size_penalty_weight(5.75),
Packit ea1746
        similarity_penalty_weight(100.0),
Packit ea1746
        view_score_weight(0.0) {
Packit ea1746
  }
Packit ea1746
  // The minimum number of canonical views to compute.
Packit ea1746
  int min_views;
Packit ea1746
Packit ea1746
  // Penalty weight for the number of canonical views.  A higher
Packit ea1746
  // number will result in fewer canonical views.
Packit ea1746
  double size_penalty_weight;
Packit ea1746
Packit ea1746
  // Penalty weight for the diversity (orthogonality) of the
Packit ea1746
  // canonical views.  A higher number will encourage less similar
Packit ea1746
  // canonical views.
Packit ea1746
  double similarity_penalty_weight;
Packit ea1746
Packit ea1746
  // Weight for per-view scores.  Lower weight places less
Packit ea1746
  // confidence in the view scores.
Packit ea1746
  double view_score_weight;
Packit ea1746
};
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres
Packit ea1746
Packit ea1746
#endif  // CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_