Blame internal/ceres/c_api_test.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: mierle@gmail.com (Keir Mierle)
Packit ea1746
Packit ea1746
#include "ceres/c_api.h"
Packit ea1746
Packit ea1746
#include <cmath>
Packit ea1746
Packit ea1746
#include "glog/logging.h"
Packit ea1746
#include "gtest/gtest.h"
Packit ea1746
Packit ea1746
// Duplicated from curve_fitting.cc.
Packit ea1746
int num_observations = 67;
Packit ea1746
double data[] = {
Packit ea1746
  0.000000e+00, 1.133898e+00,
Packit ea1746
  7.500000e-02, 1.334902e+00,
Packit ea1746
  1.500000e-01, 1.213546e+00,
Packit ea1746
  2.250000e-01, 1.252016e+00,
Packit ea1746
  3.000000e-01, 1.392265e+00,
Packit ea1746
  3.750000e-01, 1.314458e+00,
Packit ea1746
  4.500000e-01, 1.472541e+00,
Packit ea1746
  5.250000e-01, 1.536218e+00,
Packit ea1746
  6.000000e-01, 1.355679e+00,
Packit ea1746
  6.750000e-01, 1.463566e+00,
Packit ea1746
  7.500000e-01, 1.490201e+00,
Packit ea1746
  8.250000e-01, 1.658699e+00,
Packit ea1746
  9.000000e-01, 1.067574e+00,
Packit ea1746
  9.750000e-01, 1.464629e+00,
Packit ea1746
  1.050000e+00, 1.402653e+00,
Packit ea1746
  1.125000e+00, 1.713141e+00,
Packit ea1746
  1.200000e+00, 1.527021e+00,
Packit ea1746
  1.275000e+00, 1.702632e+00,
Packit ea1746
  1.350000e+00, 1.423899e+00,
Packit ea1746
  1.425000e+00, 1.543078e+00,
Packit ea1746
  1.500000e+00, 1.664015e+00,
Packit ea1746
  1.575000e+00, 1.732484e+00,
Packit ea1746
  1.650000e+00, 1.543296e+00,
Packit ea1746
  1.725000e+00, 1.959523e+00,
Packit ea1746
  1.800000e+00, 1.685132e+00,
Packit ea1746
  1.875000e+00, 1.951791e+00,
Packit ea1746
  1.950000e+00, 2.095346e+00,
Packit ea1746
  2.025000e+00, 2.361460e+00,
Packit ea1746
  2.100000e+00, 2.169119e+00,
Packit ea1746
  2.175000e+00, 2.061745e+00,
Packit ea1746
  2.250000e+00, 2.178641e+00,
Packit ea1746
  2.325000e+00, 2.104346e+00,
Packit ea1746
  2.400000e+00, 2.584470e+00,
Packit ea1746
  2.475000e+00, 1.914158e+00,
Packit ea1746
  2.550000e+00, 2.368375e+00,
Packit ea1746
  2.625000e+00, 2.686125e+00,
Packit ea1746
  2.700000e+00, 2.712395e+00,
Packit ea1746
  2.775000e+00, 2.499511e+00,
Packit ea1746
  2.850000e+00, 2.558897e+00,
Packit ea1746
  2.925000e+00, 2.309154e+00,
Packit ea1746
  3.000000e+00, 2.869503e+00,
Packit ea1746
  3.075000e+00, 3.116645e+00,
Packit ea1746
  3.150000e+00, 3.094907e+00,
Packit ea1746
  3.225000e+00, 2.471759e+00,
Packit ea1746
  3.300000e+00, 3.017131e+00,
Packit ea1746
  3.375000e+00, 3.232381e+00,
Packit ea1746
  3.450000e+00, 2.944596e+00,
Packit ea1746
  3.525000e+00, 3.385343e+00,
Packit ea1746
  3.600000e+00, 3.199826e+00,
Packit ea1746
  3.675000e+00, 3.423039e+00,
Packit ea1746
  3.750000e+00, 3.621552e+00,
Packit ea1746
  3.825000e+00, 3.559255e+00,
Packit ea1746
  3.900000e+00, 3.530713e+00,
Packit ea1746
  3.975000e+00, 3.561766e+00,
Packit ea1746
  4.050000e+00, 3.544574e+00,
Packit ea1746
  4.125000e+00, 3.867945e+00,
Packit ea1746
  4.200000e+00, 4.049776e+00,
Packit ea1746
  4.275000e+00, 3.885601e+00,
Packit ea1746
  4.350000e+00, 4.110505e+00,
Packit ea1746
  4.425000e+00, 4.345320e+00,
Packit ea1746
  4.500000e+00, 4.161241e+00,
Packit ea1746
  4.575000e+00, 4.363407e+00,
Packit ea1746
  4.650000e+00, 4.161576e+00,
Packit ea1746
  4.725000e+00, 4.619728e+00,
Packit ea1746
  4.800000e+00, 4.737410e+00,
Packit ea1746
  4.875000e+00, 4.727863e+00,
Packit ea1746
  4.950000e+00, 4.669206e+00,
Packit ea1746
};
Packit ea1746
Packit ea1746
// A test cost function, similar to the one in curve_fitting.c.
Packit ea1746
int exponential_residual(void* user_data,
Packit ea1746
                         double** parameters,
Packit ea1746
                         double* residuals,
Packit ea1746
                         double** jacobians) {
Packit ea1746
  double* measurement = (double*) user_data;
Packit ea1746
  double x = measurement[0];
Packit ea1746
  double y = measurement[1];
Packit ea1746
  double m = parameters[0][0];
Packit ea1746
  double c = parameters[1][0];
Packit ea1746
Packit ea1746
  residuals[0] = y - exp(m * x + c);
Packit ea1746
  if (jacobians == NULL) {
Packit ea1746
    return 1;
Packit ea1746
  }
Packit ea1746
  if (jacobians[0] != NULL) {
Packit ea1746
    jacobians[0][0] = - x * exp(m * x + c);  // dr/dm
Packit ea1746
  }
Packit ea1746
  if (jacobians[1] != NULL) {
Packit ea1746
    jacobians[1][0] =     - exp(m * x + c);  // dr/dc
Packit ea1746
  }
Packit ea1746
  return 1;
Packit ea1746
}
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
TEST(C_API, SimpleEndToEndTest) {
Packit ea1746
  double m = 0.0;
Packit ea1746
  double c = 0.0;
Packit ea1746
  double *parameter_pointers[] = { &m, &c };
Packit ea1746
  int parameter_sizes[] = { 1, 1 };
Packit ea1746
Packit ea1746
  ceres_problem_t* problem = ceres_create_problem();
Packit ea1746
  for (int i = 0; i < num_observations; ++i) {
Packit ea1746
    ceres_problem_add_residual_block(
Packit ea1746
        problem,
Packit ea1746
        exponential_residual,  // Cost function
Packit ea1746
        &data[2 * i],          // Points to the (x,y) measurement
Packit ea1746
        NULL,                  // Loss function
Packit ea1746
        NULL,                  // Loss function user data
Packit ea1746
        1,                     // Number of residuals
Packit ea1746
        2,                     // Number of parameter blocks
Packit ea1746
        parameter_sizes,
Packit ea1746
        parameter_pointers);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  ceres_solve(problem);
Packit ea1746
Packit ea1746
  EXPECT_NEAR(0.3, m, 0.02);
Packit ea1746
  EXPECT_NEAR(0.1, c, 0.04);
Packit ea1746
Packit ea1746
  ceres_free_problem(problem);
Packit ea1746
}
Packit ea1746
Packit ea1746
template<typename T>
Packit ea1746
class ScopedSetValue {
Packit ea1746
 public:
Packit ea1746
  ScopedSetValue(T* variable, T new_value)
Packit ea1746
      : variable_(variable), old_value_(*variable) {
Packit ea1746
    *variable = new_value;
Packit ea1746
  }
Packit ea1746
  ~ScopedSetValue() {
Packit ea1746
    *variable_ = old_value_;
Packit ea1746
  }
Packit ea1746
Packit ea1746
 private:
Packit ea1746
  T* variable_;
Packit ea1746
  T old_value_;
Packit ea1746
};
Packit ea1746
Packit ea1746
TEST(C_API, LossFunctions) {
Packit ea1746
  double m = 0.2;
Packit ea1746
  double c = 0.03;
Packit ea1746
  double *parameter_pointers[] = { &m, &c };
Packit ea1746
  int parameter_sizes[] = { 1, 1 };
Packit ea1746
Packit ea1746
  // Create two outliers, but be careful to leave the data intact.
Packit ea1746
  ScopedSetValue<double> outlier1x(&data[12], 2.5);
Packit ea1746
  ScopedSetValue<double> outlier1y(&data[13], 1.0e3);
Packit ea1746
  ScopedSetValue<double> outlier2x(&data[14], 3.2);
Packit ea1746
  ScopedSetValue<double> outlier2y(&data[15], 30e3);
Packit ea1746
Packit ea1746
  // Create a cauchy cost function, and reuse it many times.
Packit ea1746
  void* cauchy_loss_data =
Packit ea1746
      ceres_create_cauchy_loss_function_data(5.0);
Packit ea1746
Packit ea1746
  ceres_problem_t* problem = ceres_create_problem();
Packit ea1746
  for (int i = 0; i < num_observations; ++i) {
Packit ea1746
    ceres_problem_add_residual_block(
Packit ea1746
        problem,
Packit ea1746
        exponential_residual,  // Cost function
Packit ea1746
        &data[2 * i],          // Points to the (x,y) measurement
Packit ea1746
        ceres_stock_loss_function,
Packit ea1746
        cauchy_loss_data,      // Loss function user data
Packit ea1746
        1,                     // Number of residuals
Packit ea1746
        2,                     // Number of parameter blocks
Packit ea1746
        parameter_sizes,
Packit ea1746
        parameter_pointers);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  ceres_solve(problem);
Packit ea1746
Packit ea1746
  EXPECT_NEAR(0.3, m, 0.02);
Packit ea1746
  EXPECT_NEAR(0.1, c, 0.04);
Packit ea1746
Packit ea1746
  ceres_free_stock_loss_function_data(cauchy_loss_data);
Packit ea1746
  ceres_free_problem(problem);
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres