/* (C) 2007 Jean-Marc Valin, CSIRO */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "psy.h" #include #include "os_support.h" #include "arch.h" #include "stack_alloc.h" #include "mathops.h" /* The Vorbis freq<->Bark mapping */ #define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n)) #define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f) #ifndef STATIC_MODES /* Psychoacoustic spreading function. The idea here is compute a first order recursive filter. The filter coefficient is frequency dependent and chosen such that we have a -10dB/Bark slope on the right side and a -25dB/Bark slope on the left side. */ void psydecay_init(struct PsyDecay *decay, int len, celt_int32_t Fs) { int i; celt_word16_t *decayR = (celt_word16_t*)celt_alloc(sizeof(celt_word16_t)*len); /*decay->decayL = celt_alloc(sizeof(celt_word16_t)*len);*/ for (i=0;iBark function (see above) */ deriv = (8.288e-8 * f)/(3.4225e-16 *f*f*f*f + 1) + .009694/(5.476e-7 *f*f + 1) + 1e-4; /* Back to FFT bin units */ deriv *= Fs*(1/(2.f*len)); /* decay corresponding to -10dB/Bark */ decayR[i] = Q15ONE*pow(.1f, deriv); /* decay corresponding to -25dB/Bark */ /*decay->decayL[i] = Q15ONE*pow(0.0031623f, deriv);*/ /*printf ("%f %f\n", decayL[i], decayR[i]);*/ } decay->decayR = decayR; } void psydecay_clear(struct PsyDecay *decay) { celt_free((celt_word16_t *)decay->decayR); /*celt_free(decay->decayL);*/ } #endif static void spreading_func(const struct PsyDecay *d, celt_word32_t * restrict psd, int len) { int i; celt_word32_t mem; /*for (i=0;idecayR[i],mem-psd[i]); mem = psd[i]; } /* Compute left slope (-25 dB/Bark) */ mem=psd[len-1]; for (i=len-1;i>=0;i--) { /* Left side has around twice the slope as the right side, so we just square the coef instead of storing two sets of decay coefs */ celt_word16_t decayL = MULT16_16_Q15(d->decayR[i], d->decayR[i]); /* psd = (1-decay)*psd + decay*mem */ psd[i] = EPSILON + psd[i] + MULT16_32_Q15(decayL,mem-psd[i]); mem = psd[i]; } /*for (i=0;ilen-1) end = len-1; for (j=start;j>1; mask[0] = MULT16_16(X[0], X[0]); for (i=1;i>2; mem2 = mem+2*N; X[0] = 0; X[1] = 0; tonality[0] = 1; for (i=1;i1) tonality[i] = 1; if (tonality[i]<.02) tonality[i]=.02; } } #endif