// Copyright 2004 The Trustees of Indiana University. // Copyright 2005 Matthias Troyer. // Copyright 2006 Douglas Gregor . // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Authors: Douglas Gregor // Andrew Lumsdaine // Matthias Troyer /** @file datatype.hpp * * This header provides the mapping from C++ types to MPI data types. */ #ifndef BOOST_MPI_DATATYPE_HPP #define BOOST_MPI_DATATYPE_HPP #include #include #include #include #include #include #include #include #include #include #include #include // for std::pair #if defined(__cplusplus) && (201103L <= __cplusplus) #include #endif namespace boost { namespace mpi { /** * @brief Type trait that determines if there exists a built-in * integer MPI data type for a given C++ type. * * This type trait determines when there is a direct mapping from a * C++ type to an MPI data type that is classified as an integer data * type. See @c is_mpi_builtin_datatype for general information about * built-in MPI data types. */ template struct is_mpi_integer_datatype : public boost::mpl::false_ { }; /** * @brief Type trait that determines if there exists a built-in * floating point MPI data type for a given C++ type. * * This type trait determines when there is a direct mapping from a * C++ type to an MPI data type that is classified as a floating * point data type. See @c is_mpi_builtin_datatype for general * information about built-in MPI data types. */ template struct is_mpi_floating_point_datatype : public boost::mpl::false_ { }; /** * @brief Type trait that determines if there exists a built-in * logical MPI data type for a given C++ type. * * This type trait determines when there is a direct mapping from a * C++ type to an MPI data type that is classified as an logical data * type. See @c is_mpi_builtin_datatype for general information about * built-in MPI data types. */ template struct is_mpi_logical_datatype : public boost::mpl::false_ { }; /** * @brief Type trait that determines if there exists a built-in * complex MPI data type for a given C++ type. * * This type trait determines when there is a direct mapping from a * C++ type to an MPI data type that is classified as an complex data * type. See @c is_mpi_builtin_datatype for general information about * built-in MPI data types. */ template struct is_mpi_complex_datatype : public boost::mpl::false_ { }; /** * @brief Type trait that determines if there exists a built-in * byte MPI data type for a given C++ type. * * This type trait determines when there is a direct mapping from a * C++ type to an MPI data type that is classified as an byte data * type. See @c is_mpi_builtin_datatype for general information about * built-in MPI data types. */ template struct is_mpi_byte_datatype : public boost::mpl::false_ { }; /** @brief Type trait that determines if there exists a built-in MPI * data type for a given C++ type. * * This type trait determines when there is a direct mapping from a * C++ type to an MPI type. For instance, the C++ @c int type maps * directly to the MPI type @c MPI_INT. When there is a direct * mapping from the type @c T to an MPI type, @c * is_mpi_builtin_datatype will derive from @c mpl::true_ and the MPI * data type will be accessible via @c get_mpi_datatype. * * In general, users should not need to specialize this * trait. However, if you have an additional C++ type that can map * directly to only of MPI's built-in types, specialize either this * trait or one of the traits corresponding to categories of MPI data * types (@c is_mpi_integer_datatype, @c * is_mpi_floating_point_datatype, @c is_mpi_logical_datatype, @c * is_mpi_complex_datatype, or @c is_mpi_builtin_datatype). @c * is_mpi_builtin_datatype derives @c mpl::true_ if any of the traits * corresponding to MPI data type categories derived @c mpl::true_. */ template struct is_mpi_builtin_datatype : boost::mpl::or_, is_mpi_floating_point_datatype, is_mpi_logical_datatype, is_mpi_complex_datatype, is_mpi_byte_datatype > { }; /** @brief Type trait that determines if a C++ type can be mapped to * an MPI data type. * * This type trait determines if it is possible to build an MPI data * type that represents a C++ data type. When this is the case, @c * is_mpi_datatype derives @c mpl::true_ and the MPI data type will * be accessible via @c get_mpi_datatype. * For any C++ type that maps to a built-in MPI data type (see @c * is_mpi_builtin_datatype), @c is_mpi_data_type is trivially * true. However, any POD ("Plain Old Data") type containing types * that themselves can be represented by MPI data types can itself be * represented as an MPI data type. For instance, a @c point3d class * containing three @c double values can be represented as an MPI * data type. To do so, first make the data type Serializable (using * the Boost.Serialization library); then, specialize the @c * is_mpi_datatype trait for the point type so that it will derive @c * mpl::true_: * * @code * namespace boost { namespace mpi { * template<> struct is_mpi_datatype * : public mpl::true_ { }; * } } * @endcode */ template struct is_mpi_datatype : public is_mpi_builtin_datatype { }; /** @brief Returns an MPI data type for a C++ type. * * The function creates an MPI data type for the given object @c * x. The first time it is called for a class @c T, the MPI data type * is created and cached. Subsequent calls for objects of the same * type @c T return the cached MPI data type. The type @c T must * allow creation of an MPI data type. That is, it must be * Serializable and @c is_mpi_datatype must derive @c mpl::true_. * * For fundamental MPI types, a copy of the MPI data type of the MPI * library is returned. * * Note that since the data types are cached, the caller should never * call @c MPI_Type_free() for the MPI data type returned by this * call. * * @param x for an optimized call, a constructed object of the type * should be passed; otherwise, an object will be * default-constructed. * * @returns The MPI data type corresponding to type @c T. */ template MPI_Datatype get_mpi_datatype(const T& x) { BOOST_MPL_ASSERT((is_mpi_datatype)); return detail::mpi_datatype_cache().datatype(x); } // Don't parse this part when we're generating Doxygen documentation. #ifndef BOOST_MPI_DOXYGEN /// INTERNAL ONLY #define BOOST_MPI_DATATYPE(CppType, MPIType, Kind) \ template<> \ inline MPI_Datatype \ get_mpi_datatype< CppType >(const CppType&) { return MPIType; } \ \ template<> \ struct BOOST_JOIN(is_mpi_,BOOST_JOIN(Kind,_datatype))< CppType > \ : boost::mpl::true_ \ {} /// INTERNAL ONLY BOOST_MPI_DATATYPE(packed, MPI_PACKED, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(char, MPI_CHAR, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(short, MPI_SHORT, integer); /// INTERNAL ONLY BOOST_MPI_DATATYPE(int, MPI_INT, integer); /// INTERNAL ONLY BOOST_MPI_DATATYPE(long, MPI_LONG, integer); /// INTERNAL ONLY BOOST_MPI_DATATYPE(float, MPI_FLOAT, floating_point); /// INTERNAL ONLY BOOST_MPI_DATATYPE(double, MPI_DOUBLE, floating_point); /// INTERNAL ONLY BOOST_MPI_DATATYPE(long double, MPI_LONG_DOUBLE, floating_point); /// INTERNAL ONLY BOOST_MPI_DATATYPE(unsigned char, MPI_UNSIGNED_CHAR, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(unsigned short, MPI_UNSIGNED_SHORT, integer); /// INTERNAL ONLY BOOST_MPI_DATATYPE(unsigned, MPI_UNSIGNED, integer); /// INTERNAL ONLY BOOST_MPI_DATATYPE(unsigned long, MPI_UNSIGNED_LONG, integer); /// INTERNAL ONLY #define BOOST_MPI_LIST2(A, B) A, B /// INTERNAL ONLY BOOST_MPI_DATATYPE(std::pair, MPI_FLOAT_INT, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(std::pair, MPI_DOUBLE_INT, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(std::pair, MPI_LONG_DOUBLE_INT, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(std::pair), MPI_LONG_INT, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(std::pair), MPI_SHORT_INT, builtin); /// INTERNAL ONLY BOOST_MPI_DATATYPE(std::pair), MPI_2INT, builtin); #undef BOOST_MPI_LIST2 /// specialization of is_mpi_datatype for pairs template struct is_mpi_datatype > : public mpl::and_,is_mpi_datatype > { }; /// specialization of is_mpi_datatype for arrays #if defined(__cplusplus) && (201103L <= __cplusplus) template struct is_mpi_datatype > : public is_mpi_datatype { }; #endif // Define wchar_t specialization of is_mpi_datatype, if possible. #if !defined(BOOST_NO_INTRINSIC_WCHAR_T) && \ (defined(MPI_WCHAR) || (defined(MPI_VERSION) && MPI_VERSION >= 2)) BOOST_MPI_DATATYPE(wchar_t, MPI_WCHAR, builtin); #endif // Define long long or __int64 specialization of is_mpi_datatype, if possible. #if defined(BOOST_HAS_LONG_LONG) && \ (defined(MPI_LONG_LONG_INT) || (defined(MPI_VERSION) && MPI_VERSION >= 2)) BOOST_MPI_DATATYPE(long long, MPI_LONG_LONG_INT, builtin); #elif defined(BOOST_HAS_MS_INT64) && \ (defined(MPI_LONG_LONG_INT) || (defined(MPI_VERSION) && MPI_VERSION >= 2)) BOOST_MPI_DATATYPE(__int64, MPI_LONG_LONG_INT, builtin); #endif // Define unsigned long long or unsigned __int64 specialization of // is_mpi_datatype, if possible. We separate this from the check for // the (signed) long long/__int64 because some MPI implementations // (e.g., MPICH-MX) have MPI_LONG_LONG_INT but not // MPI_UNSIGNED_LONG_LONG. #if defined(BOOST_HAS_LONG_LONG) && \ (defined(MPI_UNSIGNED_LONG_LONG) \ || (defined(MPI_VERSION) && MPI_VERSION >= 2)) BOOST_MPI_DATATYPE(unsigned long long, MPI_UNSIGNED_LONG_LONG, builtin); #elif defined(BOOST_HAS_MS_INT64) && \ (defined(MPI_UNSIGNED_LONG_LONG) \ || (defined(MPI_VERSION) && MPI_VERSION >= 2)) BOOST_MPI_DATATYPE(unsigned __int64, MPI_UNSIGNED_LONG_LONG, builtin); #endif // Define signed char specialization of is_mpi_datatype, if possible. #if defined(MPI_SIGNED_CHAR) || (defined(MPI_VERSION) && MPI_VERSION >= 2) BOOST_MPI_DATATYPE(signed char, MPI_SIGNED_CHAR, builtin); #endif #endif // Doxygen namespace detail { inline MPI_Datatype build_mpi_datatype_for_bool() { MPI_Datatype type; MPI_Type_contiguous(sizeof(bool), MPI_BYTE, &type); MPI_Type_commit(&type); return type; } } /// Support for bool. There is no corresponding MPI_BOOL. /// INTERNAL ONLY template<> inline MPI_Datatype get_mpi_datatype(const bool&) { static MPI_Datatype type = detail::build_mpi_datatype_for_bool(); return type; } /// INTERNAL ONLY template<> struct is_mpi_datatype : boost::mpl::bool_ {}; #ifndef BOOST_MPI_DOXYGEN // direct support for special primitive data types of the serialization library BOOST_MPI_DATATYPE(boost::archive::library_version_type, get_mpi_datatype(uint_least16_t()), integer); BOOST_MPI_DATATYPE(boost::archive::version_type, get_mpi_datatype(uint_least8_t()), integer); BOOST_MPI_DATATYPE(boost::archive::class_id_type, get_mpi_datatype(int_least16_t()), integer); BOOST_MPI_DATATYPE(boost::archive::class_id_reference_type, get_mpi_datatype(int_least16_t()), integer); BOOST_MPI_DATATYPE(boost::archive::class_id_optional_type, get_mpi_datatype(int_least16_t()), integer); BOOST_MPI_DATATYPE(boost::archive::object_id_type, get_mpi_datatype(uint_least32_t()), integer); BOOST_MPI_DATATYPE(boost::archive::object_reference_type, get_mpi_datatype(uint_least32_t()), integer); BOOST_MPI_DATATYPE(boost::archive::tracking_type, get_mpi_datatype(bool()), builtin); BOOST_MPI_DATATYPE(boost::serialization::collection_size_type, get_mpi_datatype(std::size_t()), integer); BOOST_MPI_DATATYPE(boost::serialization::item_version_type, get_mpi_datatype(uint_least8_t()), integer); #endif // Doxygen } } // end namespace boost::mpi // direct support for special primitive data types of the serialization library // in the case of homogeneous systems // define a macro to make explicit designation of this more transparent #define BOOST_IS_MPI_DATATYPE(T) \ namespace boost { \ namespace mpi { \ template<> \ struct is_mpi_datatype< T > : mpl::true_ {}; \ }} \ /**/ #endif // BOOST_MPI_MPI_DATATYPE_HPP