/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2018-2019 Intel Corporation. All rights reserved. * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * */ #ifdef HAVE_CONFIG_H #include #endif #define _GNU_SOURCE #include #include "mesh/mesh-defs.h" #include "mesh/util.h" #include "mesh/crypto.h" #include "mesh/net-keys.h" #include "mesh/node.h" #include "mesh/net.h" #include "mesh/mesh-io.h" #include "mesh/friend.h" #include "mesh/mesh-config.h" #include "mesh/model.h" #include "mesh/appkey.h" #define abs_diff(a, b) ((a) > (b) ? (a) - (b) : (b) - (a)) #define IV_IDX_DIFF_RANGE 42 /*#define IV_IDX_UPD_MIN (5 * 60) * 5 minute for Testing */ #define IV_IDX_UPD_MIN (60 * 60 * 96) /* 96 Hours - per Spec */ #define IV_IDX_UPD_HOLD (IV_IDX_UPD_MIN/2) #define IV_IDX_UPD_MAX (IV_IDX_UPD_MIN + IV_IDX_UPD_HOLD) #define iv_is_updating(net) ((net)->iv_upd_state == IV_UPD_UPDATING) #define IV_UPDATE_SEQ_TRIGGER 0x800000 /* Half of Seq-Nums expended */ #define SEG_TO 2 #define MSG_TO 60 #define DEFAULT_MIN_DELAY 0 #define DEFAULT_MAX_DELAY 25 #define DEFAULT_TRANSMIT_COUNT 1 #define DEFAULT_TRANSMIT_INTERVAL 100 #define BEACON_INTERVAL_MIN 10 #define BEACON_INTERVAL_MAX 600 #define SAR_KEY(src, seq0) ((((uint32_t)(seq0)) << 16) | (src)) enum _relay_advice { RELAY_NONE, /* Relay not enabled in node */ RELAY_ALLOWED, /* Relay enabled, msg not to node's unicast */ RELAY_DISALLOWED, /* Msg was unicast handled by this node */ RELAY_ALWAYS /* Relay enabled, msg to a group */ }; enum _iv_upd_state { /* Allows acceptance of any iv_index secure net beacon */ IV_UPD_INIT, /* Normal, can transition, accept current or old */ IV_UPD_NORMAL, /* Updating proc running, we use old, accept old or new */ IV_UPD_UPDATING, /* Normal, can *not* transition, accept current or old iv_index */ IV_UPD_NORMAL_HOLD, }; struct net_key { struct mesh_key_set key_set; unsigned int beacon_id; uint8_t key[16]; uint8_t beacon_key[16]; uint8_t network_id[8]; }; struct mesh_beacon { struct l_timeout *timeout; uint32_t ts; uint16_t observe_period; uint16_t observed; uint16_t expected; uint8_t half_period; uint8_t beacon[23]; }; struct mesh_subnet { struct mesh_net *net; uint16_t idx; uint32_t net_key_tx; uint32_t net_key_cur; uint32_t net_key_upd; struct mesh_beacon snb; uint8_t key_refresh; uint8_t kr_phase; }; struct mesh_net { struct mesh_io *io; struct mesh_node *node; struct mesh_prov *prov; struct l_queue *app_keys; unsigned int pkt_id; unsigned int bea_id; unsigned int beacon_id; unsigned int sar_id_next; bool friend_enable; bool beacon_enable; bool proxy_enable; bool provisioner; bool friend_seq; struct l_timeout *iv_update_timeout; enum _iv_upd_state iv_upd_state; bool iv_update; uint32_t instant; /* Controller Instant of recent Rx */ uint32_t iv_index; uint32_t seq_num; uint16_t src_addr; uint16_t last_addr; uint16_t friend_addr; uint16_t tx_interval; uint16_t tx_cnt; uint8_t chan; /* Channel of recent Rx */ uint8_t default_ttl; uint8_t tid; uint8_t window_accuracy; struct { bool enable; uint16_t interval; uint8_t count; } relay; struct mesh_net_heartbeat heartbeat; struct l_queue *subnets; struct l_queue *msg_cache; struct l_queue *sar_in; struct l_queue *sar_out; struct l_queue *frnd_msgs; struct l_queue *friends; struct l_queue *destinations; uint8_t prov_priv_key[32]; /* Unprovisioned Identity */ char id_name[20]; uint8_t id_uuid[16]; /* Provisioner: unicast address range */ struct mesh_net_addr_range prov_uni_addr; /* Test Data */ uint8_t prov_rand[16]; uint8_t test_bd_addr[6]; struct mesh_net_prov_caps prov_caps; bool test_mode; }; struct mesh_msg { uint16_t src; uint32_t seq; uint32_t mic; }; struct mesh_sar { unsigned int id; struct l_timeout *seg_timeout; struct l_timeout *msg_timeout; mesh_net_status_func_t status_func; void *user_data; uint32_t flags; uint32_t last_nak; uint32_t iv_index; uint32_t seqAuth; uint16_t seqZero; uint16_t app_idx; uint16_t src; uint16_t remote; uint16_t len; bool szmic; bool frnd; bool frnd_cred; uint8_t ttl; uint8_t last_seg; uint8_t key_aid; uint8_t buf[4]; /* Large enough for ACK-Flags and MIC */ }; struct mesh_destination { uint16_t dst; uint16_t ref_cnt; }; struct msg_rx { const uint8_t *data; uint32_t iv_index; uint32_t seq; uint16_t src; uint16_t dst; uint16_t size; uint8_t tc; bool done; bool szmic; union { struct { uint16_t app_idx; uint8_t key_aid; } m; struct { uint16_t seq0; } a; struct { uint8_t opcode; } c; } u; }; struct net_decode { struct mesh_net *net; struct mesh_friend *frnd; struct mesh_key_set *key_set; uint8_t *packet; uint32_t iv_index; uint8_t size; uint8_t nid; bool proxy; }; struct net_queue_data { struct mesh_io_recv_info *info; struct mesh_net *net; const uint8_t *data; uint8_t *out; size_t out_size; enum _relay_advice relay_advice; uint32_t key_id; uint32_t iv_index; uint16_t len; }; struct net_beacon_data { const uint8_t *data; uint16_t len; }; #define FAST_CACHE_SIZE 8 static struct l_queue *fast_cache; static struct l_queue *nets; static void net_rx(void *net_ptr, void *user_data); static inline struct mesh_subnet *get_primary_subnet(struct mesh_net *net) { return l_queue_peek_head(net->subnets); } static bool match_key_index(const void *a, const void *b) { const struct mesh_subnet *subnet = a; uint16_t idx = L_PTR_TO_UINT(b); return subnet->idx == idx; } static bool match_key_id(const void *a, const void *b) { const struct mesh_subnet *subnet = a; uint32_t key_id = L_PTR_TO_UINT(b); return (key_id == subnet->net_key_cur) || (key_id == subnet->net_key_upd); } static void idle_mesh_heartbeat_send(void *net) { mesh_net_heartbeat_send(net); } static void trigger_heartbeat(struct mesh_net *net, uint16_t feature, bool in_use) { struct mesh_net_heartbeat *hb = &net->heartbeat; l_info("%s: %4.4x --> %d", __func__, feature, in_use); if (in_use) { if (net->heartbeat.features & feature) return; /* no change */ hb->features |= feature; } else { if (!(hb->features & feature)) return; /* no change */ hb->features &= ~feature; } if (!(hb->pub_features & feature)) return; /* not interested in this feature */ l_idle_oneshot(idle_mesh_heartbeat_send, net, NULL); } static bool match_by_friend(const void *a, const void *b) { const struct mesh_friend *frnd = a; uint16_t dst = L_PTR_TO_UINT(b); return frnd->dst == dst; } static void free_friend_internals(struct mesh_friend *frnd) { if (frnd->pkt_cache) l_queue_destroy(frnd->pkt_cache, l_free); if (frnd->grp_list) l_free(frnd->grp_list); frnd->pkt_cache = NULL; frnd->grp_list = NULL; net_key_unref(frnd->net_key_cur); net_key_unref(frnd->net_key_upd); } static void frnd_kr_phase1(void *a, void *b) { struct mesh_friend *frnd = a; uint32_t key_id = L_PTR_TO_UINT(b); frnd->net_key_upd = net_key_frnd_add(key_id, frnd->dst, frnd->net->src_addr, frnd->lp_cnt, frnd->fn_cnt); } static void frnd_kr_phase2(void *a, void *b) { struct mesh_friend *frnd = a; /* * I think that a Friend should use Old Key as long as possible * Because a Friend Node will enter Phase 3 before it's LPN. * Alternatively, the FN could keep the Old Friend Keys until it * receives it's first Poll using the new keys (?) */ l_info("Use Both KeySet %d && %d for %4.4x", frnd->net_key_cur, frnd->net_key_upd, frnd->dst); } static void frnd_kr_phase3(void *a, void *b) { struct mesh_friend *frnd = a; l_info("Replace KeySet %d with %d for %4.4x", frnd->net_key_cur, frnd->net_key_upd, frnd->dst); net_key_unref(frnd->net_key_cur); frnd->net_key_cur = frnd->net_key_upd; frnd->net_key_upd = 0; } /* TODO: add net key idx? For now, use primary net key */ struct mesh_friend *mesh_friend_new(struct mesh_net *net, uint16_t dst, uint8_t ele_cnt, uint8_t frd, uint8_t frw, uint32_t fpt, uint16_t fn_cnt, uint16_t lp_cnt) { struct mesh_subnet *subnet; struct mesh_friend *frnd = l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(dst)); if (frnd) { /* Kill all timers and empty cache for this friend */ free_friend_internals(frnd); l_timeout_remove(frnd->timeout); frnd->timeout = NULL; } else { frnd = l_new(struct mesh_friend, 1); l_queue_push_head(net->friends, frnd); } /* add _k2 */ frnd->net = net; frnd->dst = dst; frnd->frd = frd; frnd->frw = frw; frnd->fn_cnt = fn_cnt; frnd->lp_cnt = lp_cnt; frnd->poll_timeout = fpt; frnd->ele_cnt = ele_cnt; frnd->pkt_cache = l_queue_new(); frnd->net_key_upd = 0; subnet = get_primary_subnet(net); /* TODO: the primary key must be present, do we need to add check?. */ frnd->net_key_cur = net_key_frnd_add(subnet->net_key_cur, dst, net->src_addr, lp_cnt, fn_cnt); if (!subnet->net_key_upd) return frnd; frnd->net_key_upd = net_key_frnd_add(subnet->net_key_upd, dst, net->src_addr, lp_cnt, fn_cnt); return frnd; } void mesh_friend_free(void *data) { struct mesh_friend *frnd = data; free_friend_internals(frnd); l_timeout_remove(frnd->timeout); l_free(frnd); } bool mesh_friend_clear(struct mesh_net *net, struct mesh_friend *frnd) { bool removed = l_queue_remove(net->friends, frnd); free_friend_internals(frnd); return removed; } void mesh_friend_sub_add(struct mesh_net *net, uint16_t lpn, uint8_t ele_cnt, uint8_t grp_cnt, const uint8_t *list) { uint16_t *new_list; uint16_t *grp_list; struct mesh_friend *frnd = l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(lpn)); if (!frnd) return; new_list = l_malloc((grp_cnt + frnd->grp_cnt) * sizeof(uint16_t)); grp_list = frnd->grp_list; if (grp_list && frnd->grp_cnt) memcpy(new_list, grp_list, frnd->grp_cnt * sizeof(uint16_t)); memcpy(&new_list[frnd->grp_cnt], list, grp_cnt * sizeof(uint16_t)); l_free(grp_list); frnd->ele_cnt = ele_cnt; frnd->grp_list = new_list; frnd->grp_cnt += grp_cnt; } void mesh_friend_sub_del(struct mesh_net *net, uint16_t lpn, uint8_t cnt, const uint8_t *del_list) { uint16_t *grp_list; int16_t i, grp_cnt; size_t cnt16 = cnt * sizeof(uint16_t); struct mesh_friend *frnd = l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(lpn)); if (!frnd) return; grp_cnt = frnd->grp_cnt; grp_list = frnd->grp_list; while (cnt-- && grp_cnt) { cnt16 -= sizeof(uint16_t); for (i = grp_cnt - 1; i >= 0; i--) { if (l_get_le16(del_list + cnt16) == grp_list[i]) { grp_cnt--; memcpy(&grp_list[i], &grp_list[i + 1], (grp_cnt - i) * sizeof(uint16_t)); break; } } } frnd->grp_cnt = grp_cnt; if (!grp_cnt) { l_free(frnd->grp_list); frnd->grp_list = NULL; } } uint32_t mesh_net_next_seq_num(struct mesh_net *net) { uint32_t seq = net->seq_num++; node_set_sequence_number(net->node, net->seq_num); return seq; } static struct mesh_sar *mesh_sar_new(size_t len) { size_t size = sizeof(struct mesh_sar) + len; struct mesh_sar *sar; sar = l_malloc(size); memset(sar, 0, size); return sar; } static void mesh_sar_free(void *data) { struct mesh_sar *sar = data; if (!sar) return; l_timeout_remove(sar->seg_timeout); l_timeout_remove(sar->msg_timeout); l_free(sar); } static void mesh_msg_free(void *data) { struct mesh_msg *msg = data; l_free(msg); } static void subnet_free(void *data) { struct mesh_subnet *subnet = data; net_key_unref(subnet->net_key_cur); net_key_unref(subnet->net_key_upd); l_free(subnet); } static void lpn_process_beacon(void *user_data, const void *data, uint8_t size, int8_t rssi); static struct mesh_subnet *subnet_new(struct mesh_net *net, uint16_t idx) { struct mesh_subnet *subnet; subnet = l_new(struct mesh_subnet, 1); if (!subnet) return NULL; subnet->net = net; subnet->idx = idx; subnet->snb.beacon[0] = MESH_AD_TYPE_BEACON; return subnet; } static bool create_secure_beacon(struct mesh_net *net, struct mesh_subnet *subnet, uint8_t *beacon_data) { bool kr = (subnet->kr_phase == KEY_REFRESH_PHASE_TWO); return net_key_snb_compose(subnet->net_key_tx, net->iv_index, kr, net->iv_update, beacon_data); } static void send_network_beacon(struct mesh_subnet *subnet, struct mesh_net *net) { struct mesh_io_send_info info = { .type = MESH_IO_TIMING_TYPE_GENERAL, .u.gen.interval = net->tx_interval, .u.gen.cnt = 1, .u.gen.min_delay = DEFAULT_MIN_DELAY, .u.gen.max_delay = DEFAULT_MAX_DELAY }; l_info("Send SNB on network %3.3x", subnet->idx); mesh_io_send(net->io, &info, subnet->snb.beacon, sizeof(subnet->snb.beacon)); } static void network_beacon_timeout(struct l_timeout *timeout, void *user_data) { struct mesh_subnet *subnet = user_data; uint32_t interval; send_network_beacon(subnet, subnet->net); if (!subnet->snb.half_period) { l_debug("beacon TO period %d, observed %d, expected %d", subnet->snb.observe_period, subnet->snb.observed, subnet->snb.expected); interval = subnet->snb.observe_period * (subnet->snb.observed + 1) / subnet->snb.expected; subnet->snb.observe_period = interval * 2; subnet->snb.expected = subnet->snb.observe_period / 10; subnet->snb.observed = 0; } else interval = subnet->snb.observe_period / 2; if (interval < BEACON_INTERVAL_MIN) interval = BEACON_INTERVAL_MIN; if (interval > BEACON_INTERVAL_MAX) interval = BEACON_INTERVAL_MAX; subnet->snb.ts = get_timestamp_secs(); subnet->snb.half_period ^= 1; l_timeout_modify(timeout, interval); } static void start_network_beacon(void *a, void *b) { struct mesh_subnet *subnet = a; struct mesh_net *net = b; if (!net->beacon_enable) { if (subnet->snb.timeout) l_timeout_remove(subnet->snb.timeout); subnet->snb.timeout = NULL; return; } /* If timeout is active, let it run it's course */ if (subnet->snb.timeout) return; send_network_beacon(subnet, subnet->net); subnet->snb.ts = get_timestamp_secs(); subnet->snb.expected = 2; subnet->snb.observed = 0; subnet->snb.half_period = 1; subnet->snb.observe_period = BEACON_INTERVAL_MIN * 2; subnet->snb.timeout = l_timeout_create(BEACON_INTERVAL_MIN, network_beacon_timeout, subnet, NULL); } struct mesh_net *mesh_net_new(struct mesh_node *node) { struct mesh_net *net; net = l_new(struct mesh_net, 1); net->node = node; net->pkt_id = 0; net->bea_id = 0; net->beacon_enable = true; net->proxy_enable = false; net->relay.enable = false; net->seq_num = 0x000000; net->src_addr = 0x0000; net->default_ttl = 0x7f; net->provisioner = false; net->test_mode = false; memset(&net->prov_caps, 0, sizeof(net->prov_caps)); net->prov_caps.algorithms = 1; net->tx_cnt = DEFAULT_TRANSMIT_COUNT; net->tx_interval = DEFAULT_TRANSMIT_INTERVAL; net->subnets = l_queue_new(); net->msg_cache = l_queue_new(); net->sar_in = l_queue_new(); net->sar_out = l_queue_new(); net->frnd_msgs = l_queue_new(); net->friends = l_queue_new(); net->destinations = l_queue_new(); net->app_keys = l_queue_new(); memset(&net->heartbeat, 0, sizeof(net->heartbeat)); if (!nets) nets = l_queue_new(); if (!fast_cache) fast_cache = l_queue_new(); return net; } void mesh_net_free(struct mesh_net *net) { if (!net) return; l_queue_destroy(net->subnets, subnet_free); l_queue_destroy(net->msg_cache, mesh_msg_free); l_queue_destroy(net->sar_in, mesh_sar_free); l_queue_destroy(net->sar_out, mesh_sar_free); l_queue_destroy(net->frnd_msgs, l_free); l_queue_destroy(net->friends, mesh_friend_free); l_queue_destroy(net->destinations, l_free); l_queue_destroy(net->app_keys, appkey_key_free); l_free(net); } bool mesh_net_set_seq_num(struct mesh_net *net, uint32_t seq) { if (!net) return false; net->seq_num = seq; node_set_sequence_number(net->node, net->seq_num); return true; } bool mesh_net_set_default_ttl(struct mesh_net *net, uint8_t ttl) { if (!net) return false; net->default_ttl = ttl; return true; } uint32_t mesh_net_get_seq_num(struct mesh_net *net) { if (!net) return 0; return net->seq_num; } uint8_t mesh_net_get_default_ttl(struct mesh_net *net) { if (!net) return 0; return net->default_ttl; } uint16_t mesh_net_get_address(struct mesh_net *net) { if (!net) return 0; return net->src_addr; } bool mesh_net_register_unicast(struct mesh_net *net, uint16_t address, uint8_t num_ele) { if (!net || !IS_UNICAST(address) || !num_ele) return false; net->src_addr = address; net->last_addr = address + num_ele - 1; if (net->last_addr < net->src_addr) return false; do { mesh_net_dst_reg(net, address); address++; num_ele--; } while (num_ele > 0); return true; } uint8_t mesh_net_get_num_ele(struct mesh_net *net) { if (!net) return 0; return net->last_addr - net->src_addr + 1; } bool mesh_net_set_proxy_mode(struct mesh_net *net, bool enable) { if (!net) return false; /* No support for proxy yet */ if (enable) { l_error("Proxy not supported!"); return false; } trigger_heartbeat(net, FEATURE_PROXY, enable); return true; } bool mesh_net_set_friend_mode(struct mesh_net *net, bool enable) { if (!net) return false; if (net->friend_enable && !enable) l_queue_clear(net->friends, mesh_friend_free); net->friend_enable = enable; trigger_heartbeat(net, FEATURE_FRIEND, enable); return true; } bool mesh_net_set_relay_mode(struct mesh_net *net, bool enable, uint8_t cnt, uint8_t interval) { if (!net) return false; net->relay.enable = enable; net->relay.count = cnt; net->relay.interval = interval; trigger_heartbeat(net, FEATURE_RELAY, enable); return true; } struct mesh_net_prov_caps *mesh_net_prov_caps_get(struct mesh_net *net) { if (net) return &net->prov_caps; return NULL; } char *mesh_net_id_name(struct mesh_net *net) { if (net && net->id_name[0]) return net->id_name; return NULL; } bool mesh_net_id_uuid_set(struct mesh_net *net, uint8_t uuid[16]) { if (!net) return false; memcpy(net->id_uuid, uuid, 16); return true; } uint8_t *mesh_net_priv_key_get(struct mesh_net *net) { if (net) return net->prov_priv_key; return NULL; } bool mesh_net_priv_key_set(struct mesh_net *net, uint8_t key[32]) { if (!net) return false; memcpy(net->prov_priv_key, key, 32); return true; } uint8_t *mesh_net_test_addr(struct mesh_net *net) { const uint8_t zero_addr[] = {0, 0, 0, 0, 0, 0}; if (net && memcmp(net->test_bd_addr, zero_addr, 6)) return net->test_bd_addr; return NULL; } uint8_t *mesh_net_prov_rand(struct mesh_net *net) { if (net) return net->prov_rand; return NULL; } uint16_t mesh_net_prov_uni(struct mesh_net *net, uint8_t ele_cnt) { uint16_t uni; uint16_t next; if (!net) return 0; next = net->prov_uni_addr.next + ele_cnt; if (next > 0x8000 || next > net->prov_uni_addr.high) return UNASSIGNED_ADDRESS; uni = net->prov_uni_addr.next; net->prov_uni_addr.next = next; return uni; } bool mesh_net_test_mode(struct mesh_net *net) { if (net) return net->test_mode; return false; } int mesh_net_get_identity_mode(struct mesh_net *net, uint16_t idx, uint8_t *mode) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet) return MESH_STATUS_INVALID_NETKEY; /* Currently, proxy mode is not supported */ *mode = MESH_MODE_UNSUPPORTED; return MESH_STATUS_SUCCESS; } int mesh_net_del_key(struct mesh_net *net, uint16_t idx) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; /* Cannot remove primary key */ if (l_queue_length(net->subnets) <= 1) return MESH_STATUS_CANNOT_REMOVE; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet) return MESH_STATUS_CANNOT_REMOVE; /* Delete associated app keys */ appkey_delete_bound_keys(net, idx); /* Disable hearbeat publication on this subnet */ if (idx == net->heartbeat.pub_net_idx) net->heartbeat.pub_dst = UNASSIGNED_ADDRESS; /* TODO: cancel beacon_enable on this subnet */ l_queue_remove(net->subnets, subnet); subnet_free(subnet); if (!mesh_config_net_key_del(node_config_get(net->node), idx)) return MESH_STATUS_STORAGE_FAIL; return MESH_STATUS_SUCCESS; } static struct mesh_subnet *add_key(struct mesh_net *net, uint16_t idx, const uint8_t *value) { struct mesh_subnet *subnet; subnet = subnet_new(net, idx); if (!subnet) return NULL; subnet->net_key_tx = subnet->net_key_cur = net_key_add(value); if (!subnet->net_key_cur) { l_free(subnet); return NULL; } if (!create_secure_beacon(net, subnet, subnet->snb.beacon + 1)) { subnet_free(subnet); return NULL; } l_queue_push_tail(net->subnets, subnet); return subnet; } /* * This function is called when Configuration Server Model receives * a NETKEY_ADD command */ int mesh_net_add_key(struct mesh_net *net, uint16_t idx, const uint8_t *value) { struct mesh_subnet *subnet; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (subnet) { if (net_key_confirm(subnet->net_key_cur, value)) return MESH_STATUS_SUCCESS; else return MESH_STATUS_IDX_ALREADY_STORED; } subnet = add_key(net, idx, value); if (!subnet) return MESH_STATUS_INSUFF_RESOURCES; if (!mesh_config_net_key_add(node_config_get(net->node), idx, value)) { l_queue_remove(net->subnets, subnet); subnet_free(subnet); return MESH_STATUS_STORAGE_FAIL; } if (net->io) start_network_beacon(subnet, net); return MESH_STATUS_SUCCESS; } void mesh_net_flush_msg_queues(struct mesh_net *net) { l_queue_clear(net->msg_cache, mesh_msg_free); } uint32_t mesh_net_get_iv_index(struct mesh_net *net) { if (!net) return 0xffffffff; return net->iv_index - net->iv_update; } /* TODO: net key index? */ void mesh_net_get_snb_state(struct mesh_net *net, uint8_t *flags, uint32_t *iv_index) { struct mesh_subnet *subnet; if (!net || !flags || !iv_index) return; *iv_index = net->iv_index; *flags = (net->iv_upd_state == IV_UPD_UPDATING) ? 0x02 : 0x00; subnet = get_primary_subnet(net); if (subnet) *flags |= subnet->key_refresh ? 0x01 : 0x00; } bool mesh_net_get_key(struct mesh_net *net, bool new_key, uint16_t idx, uint32_t *key_id) { struct mesh_subnet *subnet; if (!net) return false; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet) return false; if (!new_key) { *key_id = subnet->net_key_cur; return true; } if (!subnet->net_key_upd) return false; *key_id = subnet->net_key_upd; return true; } bool mesh_net_key_list_get(struct mesh_net *net, uint8_t *buf, uint16_t *size) { const struct l_queue_entry *entry; uint16_t n, buf_size; if (!net || !buf || !size) return false; buf_size = *size; if (buf_size < l_queue_length(net->subnets) * 2) return false; n = 0; entry = l_queue_get_entries(net->subnets); for (; entry; entry = entry->next) { struct mesh_subnet *subnet = entry->data; l_put_le16(subnet->idx, buf); n += 2; } *size = n; return true; } bool mesh_net_get_frnd_seq(struct mesh_net *net) { if (!net) return false; return net->friend_seq; } void mesh_net_set_frnd_seq(struct mesh_net *net, bool seq) { if (!net) return; net->friend_seq = seq; } static bool match_cache(const void *a, const void *b) { const struct mesh_msg *msg = a; const struct mesh_msg *tst = b; if (msg->seq != tst->seq || msg->mic != tst->mic || msg->src != tst->src) return false; return true; } static bool msg_in_cache(struct mesh_net *net, uint16_t src, uint32_t seq, uint32_t mic) { struct mesh_msg *msg; struct mesh_msg tst = { .src = src, .seq = seq, .mic = mic, }; msg = l_queue_remove_if(net->msg_cache, match_cache, &tst); if (msg) { l_debug("Supressing duplicate %4.4x + %6.6x + %8.8x", src, seq, mic); l_queue_push_head(net->msg_cache, msg); return true; } msg = l_new(struct mesh_msg, 1); *msg = tst; l_queue_push_head(net->msg_cache, msg); l_debug("Add %4.4x + %6.6x + %8.8x", src, seq, mic); if (l_queue_length(net->msg_cache) > MSG_CACHE_SIZE) { msg = l_queue_peek_tail(net->msg_cache); /* Remove Tail (oldest msg in cache) */ l_debug("Remove %4.4x + %6.6x + %8.8x", msg->src, msg->seq, msg->mic); if (l_queue_remove(net->msg_cache, msg)) l_free(msg); } return false; } static bool match_sar_seq0(const void *a, const void *b) { const struct mesh_sar *sar = a; uint16_t seqZero = L_PTR_TO_UINT(b); return sar->seqZero == seqZero; } static bool match_sar_remote(const void *a, const void *b) { const struct mesh_sar *sar = a; uint16_t remote = L_PTR_TO_UINT(b); return sar->remote == remote; } static bool match_msg_timeout(const void *a, const void *b) { const struct mesh_sar *sar = a; const struct l_timeout *msg_timeout = b; return sar->msg_timeout == msg_timeout; } static bool match_seg_timeout(const void *a, const void *b) { const struct mesh_sar *sar = a; const struct l_timeout *seg_timeout = b; return sar->seg_timeout == seg_timeout; } static bool match_dest_dst(const void *a, const void *b) { const struct mesh_destination *dest = a; uint16_t dst = L_PTR_TO_UINT(b); return dst == dest->dst; } static bool match_frnd_dst(const void *a, const void *b) { const struct mesh_friend *frnd = a; uint16_t dst = L_PTR_TO_UINT(b); int16_t i, grp_cnt = frnd->grp_cnt; uint16_t *grp_list = frnd->grp_list; /* * Determine if this message is for this friends unicast * address, and/or one of it's group/virtual addresses */ if (dst >= frnd->dst && dst < (frnd->dst + frnd->ele_cnt)) return true; if (!(dst & 0x8000)) return false; for (i = 0; i < grp_cnt; i++) { if (dst == grp_list[i]) return true; } return false; } static bool is_lpn_friend(struct mesh_net *net, uint16_t addr, bool frnd) { void *tst; if (!frnd) return false; tst = l_queue_find(net->friends, match_frnd_dst, L_UINT_TO_PTR(addr)); return tst != NULL; } static bool is_us(struct mesh_net *net, uint16_t addr, bool src) { void *tst; if (IS_ALL_NODES(addr)) return true; if (addr == FRIENDS_ADDRESS) return net->friend_enable; if (addr == RELAYS_ADDRESS) return net->relay.enable; if (addr == PROXIES_ADDRESS) return net->proxy_enable; if (addr >= net->src_addr && addr <= net->last_addr) return true; tst = l_queue_find(net->destinations, match_dest_dst, L_UINT_TO_PTR(addr)); if (tst == NULL && !src) tst = l_queue_find(net->friends, match_frnd_dst, L_UINT_TO_PTR(addr)); return tst != NULL; } static struct mesh_friend_msg *mesh_friend_msg_new(uint8_t seg_max) { struct mesh_friend_msg *frnd_msg; if (seg_max) { size_t size = sizeof(struct mesh_friend_msg) - sizeof(struct mesh_friend_seg_one); size += (seg_max + 1) * sizeof(struct mesh_friend_seg_12); frnd_msg = l_malloc(size); } else frnd_msg = l_new(struct mesh_friend_msg, 1); return frnd_msg; } static bool match_ack(const void *a, const void *b) { const struct mesh_friend_msg *old = a; const struct mesh_friend_msg *rx = b; uint32_t old_hdr; uint32_t new_hdr; /* Determine if old pkt is ACK to same SAR message that new ACK is */ if (!old->ctl || old->src != rx->src) return false; /* Check the quickest items first before digging deeper */ old_hdr = old->u.one[0].hdr & HDR_ACK_MASK; new_hdr = rx->u.one[0].hdr & HDR_ACK_MASK; return old_hdr == new_hdr; } static void enqueue_friend_pkt(void *a, void *b) { struct mesh_friend *frnd = a; struct mesh_friend_msg *pkt, *rx = b; size_t size; int16_t i; if (rx->done) return; /* * Determine if this message is for this friends unicast * address, and/or one of it's group/virtual addresses */ if (rx->dst >= frnd->dst && (rx->dst - frnd->dst) < frnd->ele_cnt) { rx->done = true; goto enqueue; } if (!(rx->dst & 0x8000)) return; if (!IS_ALL_NODES(rx->dst)) { for (i = 0; i < frnd->grp_cnt; i++) { if (rx->dst == frnd->grp_list[i]) goto enqueue; } return; } enqueue: /* Special handling for Seg Ack -- Only one per message queue */ if (((rx->u.one[0].hdr >> OPCODE_HDR_SHIFT) & OPCODE_MASK) == NET_OP_SEG_ACKNOWLEDGE) { void *old_head = l_queue_peek_head(frnd->pkt_cache); /* Suppress duplicate ACKs */ do { void *old = l_queue_remove_if(frnd->pkt_cache, match_ack, rx); if (old) { if (old_head == old) { /* * If we are discarding head for any * reason, reset FRND SEQ */ frnd->last = frnd->seq; } l_free(old); } else break; } while (true); } l_debug("%s for %4.4x from %4.4x ttl: %2.2x (seq: %6.6x) (ctl: %d)", __func__, frnd->dst, rx->src, rx->ttl, rx->u.one[0].seq, rx->ctl); if (rx->cnt_in) { size = sizeof(struct mesh_friend_msg) - sizeof(struct mesh_friend_seg_one); size += (rx->cnt_in + 1) * sizeof(struct mesh_friend_seg_12); } else size = sizeof(struct mesh_friend_msg); pkt = l_malloc(size); memcpy(pkt, rx, size); l_queue_push_tail(frnd->pkt_cache, pkt); if (l_queue_length(frnd->pkt_cache) > FRND_CACHE_MAX) { /* * TODO: Guard against popping UPDATE packets * (disallowed per spec) */ pkt = l_queue_pop_head(frnd->pkt_cache); l_free(pkt); frnd->last = frnd->seq; } } static void enqueue_update(void *a, void *b) { struct mesh_friend *frnd = a; struct mesh_friend_msg *pkt = b; pkt->dst = frnd->dst; pkt->done = false; enqueue_friend_pkt(frnd, pkt); } static uint32_t seq_auth(uint32_t seq, uint16_t seqZero) { uint32_t seqAuth = seqZero & SEQ_ZERO_MASK; seqAuth |= seq & (~SEQ_ZERO_MASK); if (seqAuth > seq) seqAuth -= (SEQ_ZERO_MASK + 1); return seqAuth; } static bool friend_packet_queue(struct mesh_net *net, uint32_t iv_index, bool ctl, uint8_t ttl, uint32_t seq, uint16_t src, uint16_t dst, uint32_t hdr, const uint8_t *data, uint16_t size) { struct mesh_friend_msg *frnd_msg; uint8_t seg_max = SEG_TOTAL(hdr); bool ret; if (seg_max && !IS_SEGMENTED(hdr)) return false; frnd_msg = mesh_friend_msg_new(seg_max); if (IS_SEGMENTED(hdr)) { uint32_t seqAuth = seq_auth(seq, hdr >> SEQ_ZERO_HDR_SHIFT); uint8_t i; for (i = 0; i <= seg_max; i++) { memcpy(frnd_msg->u.s12[i].data, data, 12); frnd_msg->u.s12[i].hdr = hdr; frnd_msg->u.s12[i].seq = seqAuth + i; data += 12; hdr += (1 << SEGO_HDR_SHIFT); } frnd_msg->u.s12[seg_max].seq = seq; frnd_msg->cnt_in = seg_max; frnd_msg->last_len = size % 12; if (!frnd_msg->last_len) frnd_msg->last_len = 12; } else { uint8_t opcode = hdr >> OPCODE_HDR_SHIFT; if (ctl && opcode != NET_OP_SEG_ACKNOWLEDGE) { /* Don't cache Friend Ctl opcodes */ if (FRND_OPCODE(opcode)) { l_free(frnd_msg); return false; } memcpy(frnd_msg->u.one[0].data + 1, data, size); frnd_msg->last_len = size + 1; frnd_msg->u.one[0].data[0] = opcode; } else { memcpy(frnd_msg->u.one[0].data, data, size); frnd_msg->last_len = size; } frnd_msg->u.one[0].hdr = hdr; frnd_msg->u.one[0].seq = seq; } frnd_msg->iv_index = iv_index; frnd_msg->src = src; frnd_msg->dst = dst; frnd_msg->ctl = ctl; frnd_msg->ttl = ttl; /* Re-Package into Friend Delivery payload */ l_queue_foreach(net->friends, enqueue_friend_pkt, frnd_msg); ret = frnd_msg->done; /* TODO Optimization(?): Unicast messages keep this buffer */ l_free(frnd_msg); return ret; } static void friend_ack_rxed(struct mesh_net *net, uint32_t iv_index, uint32_t seq, uint16_t src, uint16_t dst, const uint8_t *pkt) { uint32_t hdr = l_get_be32(pkt) & ((SEQ_ZERO_MASK << SEQ_ZERO_HDR_SHIFT) | /* Preserve SeqZero */ (true << RELAY_HDR_SHIFT)); /* Preserve Relay bit */ uint32_t flags = l_get_be32(pkt + 3); struct mesh_friend_msg frnd_ack = { .ctl = true, .iv_index = iv_index, .src = src, .dst = dst, .last_len = sizeof(flags), .u.one[0].seq = seq, .done = false, }; hdr |= NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT; frnd_ack.u.one[0].hdr = hdr; l_put_be32(flags, frnd_ack.u.one[0].data); l_queue_foreach(net->friends, enqueue_friend_pkt, &frnd_ack); } static bool send_seg(struct mesh_net *net, struct mesh_sar *msg, uint8_t seg); static void send_frnd_ack(struct mesh_net *net, uint16_t src, uint16_t dst, uint32_t hdr, uint32_t flags) { uint32_t expected; uint8_t msg[7]; /* We don't ACK from multicast destinations */ if (src & 0x8000) return; /* Calculate the "Full ACK" mask */ expected = 0xffffffff >> (31 - SEG_TOTAL(hdr)); /* Clear Hdr bits that don't apply to Seg ACK */ hdr &= ~((true << SEG_HDR_SHIFT) | (OPCODE_MASK << OPCODE_HDR_SHIFT) | (true << SZMIC_HDR_SHIFT) | (SEG_MASK << SEGO_HDR_SHIFT) | (SEG_MASK << SEGN_HDR_SHIFT)); hdr |= NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT; hdr |= true << RELAY_HDR_SHIFT; /* Clear all unexpected bits */ flags &= expected; l_put_be32(hdr, msg); l_put_be32(flags, msg + 3); l_info("Send Friend ACK to Segs: %8.8x", flags); if (is_lpn_friend(net, dst, true)) { /* If we are acking our LPN Friend, queue, don't send */ friend_ack_rxed(net, mesh_net_get_iv_index(net), mesh_net_next_seq_num(net), 0, dst, msg); } else { mesh_net_transport_send(net, 0, false, mesh_net_get_iv_index(net), DEFAULT_TTL, 0, 0, dst, msg, sizeof(msg)); } } static void send_net_ack(struct mesh_net *net, struct mesh_sar *sar, uint32_t flags) { uint8_t msg[7]; uint32_t hdr; uint16_t src = sar->src; uint16_t dst = sar->remote; /* We don't ACK from multicast destinations */ if (src & 0x8000) return; /* We don't ACK segments as a Low Power Node */ if (net->friend_addr) return; hdr = NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT; hdr |= sar->seqZero << SEQ_ZERO_HDR_SHIFT; if (is_lpn_friend(net, src, true)) hdr |= true << RELAY_HDR_SHIFT; l_put_be32(hdr, msg); l_put_be32(flags, msg + 3); l_info("Send%s ACK to Segs: %8.8x", sar->frnd ? " Friend" : "", flags); if (is_lpn_friend(net, dst, true)) { /* If we are acking our LPN Friend, queue, don't send */ friend_ack_rxed(net, mesh_net_get_iv_index(net), mesh_net_next_seq_num(net), src, dst, msg); return; } mesh_net_transport_send(net, 0, false, mesh_net_get_iv_index(net), DEFAULT_TTL, 0, src, dst, msg, sizeof(msg)); } static void inseg_to(struct l_timeout *seg_timeout, void *user_data) { struct mesh_net *net = user_data; struct mesh_sar *sar = l_queue_find(net->sar_in, match_seg_timeout, seg_timeout); l_timeout_remove(seg_timeout); if (!sar) return; /* Send NAK */ l_info("Timeout %p %3.3x", sar, sar->app_idx); send_net_ack(net, sar, sar->flags); sar->seg_timeout = l_timeout_create(SEG_TO, inseg_to, net, NULL); } static void inmsg_to(struct l_timeout *msg_timeout, void *user_data) { struct mesh_net *net = user_data; struct mesh_sar *sar = l_queue_remove_if(net->sar_in, match_msg_timeout, msg_timeout); l_timeout_remove(msg_timeout); if (!sar) return; sar->msg_timeout = NULL; /* print_packet("Incoming SAR Timeout", sar->buf, sar->len); */ mesh_sar_free(sar); } static void outmsg_to(struct l_timeout *msg_timeout, void *user_data) { struct mesh_net *net = user_data; struct mesh_sar *sar = l_queue_remove_if(net->sar_out, match_msg_timeout, msg_timeout); l_timeout_remove(msg_timeout); if (!sar) return; sar->msg_timeout = NULL; if (sar->status_func) sar->status_func(sar->remote, 1, sar->buf, sar->len - 4, sar->user_data); /* print_packet("Outgoing SAR Timeout", sar->buf, sar->len); */ mesh_sar_free(sar); } static void outseg_to(struct l_timeout *seg_timeout, void *user_data); static void ack_received(struct mesh_net *net, bool timeout, uint16_t src, uint16_t dst, uint16_t seq0, uint32_t ack_flag) { struct mesh_sar *outgoing; uint32_t seg_flag = 0x00000001; uint32_t ack_copy = ack_flag; uint16_t i; l_info("ACK Rxed (%x) (to:%d): %8.8x", seq0, timeout, ack_flag); outgoing = l_queue_find(net->sar_out, match_sar_seq0, L_UINT_TO_PTR(seq0)); if (!outgoing) { l_info("Not Found: %4.4x", seq0); return; } /* * TODO -- If we receive from different * SRC than we are sending to, make sure the OBO flag is set */ if ((!timeout && !ack_flag) || (outgoing->flags & ack_flag) == outgoing->flags) { l_debug("ob_sar_removal (%x)", outgoing->flags); /* Note: ack_flags == 0x00000000 is a remote Cancel request */ if (outgoing->status_func) outgoing->status_func(src, ack_flag ? 0 : 1, outgoing->buf, outgoing->len - 4, outgoing->user_data); l_queue_remove(net->sar_out, outgoing); mesh_sar_free(outgoing); return; } outgoing->last_nak |= ack_flag; ack_copy &= outgoing->flags; for (i = 0; i <= SEG_MAX(outgoing->len); i++, seg_flag <<= 1) { if (seg_flag & ack_flag) { l_debug("Skipping Seg %d of %d", i, SEG_MAX(outgoing->len)); continue; } ack_copy |= seg_flag; l_info("Resend Seg %d net:%p dst:%x app_idx:%3.3x", i, net, outgoing->remote, outgoing->app_idx); send_seg(net, outgoing, i); } l_timeout_remove(outgoing->seg_timeout); outgoing->seg_timeout = l_timeout_create(SEG_TO, outseg_to, net, NULL); } static void outack_to(struct l_timeout *seg_timeout, void *user_data) { struct mesh_net *net = user_data; struct mesh_sar *sar = l_queue_find(net->sar_out, match_seg_timeout, seg_timeout); l_timeout_remove(seg_timeout); if (!sar) return; sar->seg_timeout = NULL; /* Re-Send missing segments by faking NAK */ ack_received(net, true, sar->remote, sar->src, sar->seqZero, sar->last_nak); } static void outseg_to(struct l_timeout *seg_timeout, void *user_data) { struct mesh_net *net = user_data; struct mesh_sar *sar = l_queue_find(net->sar_out, match_seg_timeout, seg_timeout); l_timeout_remove(seg_timeout); if (!sar) return; sar->seg_timeout = NULL; if (net->friend_addr) { /* We are LPN -- Poll for ACK */ frnd_ack_poll(net); sar->seg_timeout = l_timeout_create(SEG_TO, outack_to, net, NULL); } else { /* Re-Send missing segments by faking NACK */ ack_received(net, true, sar->remote, sar->src, sar->seqZero, sar->last_nak); } } static bool msg_rxed(struct mesh_net *net, bool frnd, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t net_idx, uint16_t src, uint16_t dst, uint8_t key_aid, bool szmic, uint16_t seqZero, const uint8_t *data, uint16_t size) { uint32_t seqAuth = seq_auth(seq, seqZero); /* Sanity check seqAuth */ if (seqAuth > seq) return false; /* Save un-decrypted messages for our friends */ if (!frnd && l_queue_length(net->friends)) { uint32_t hdr = key_aid << KEY_HDR_SHIFT; uint8_t frnd_ttl = ttl; /* If not from us, decrement for our hop */ if (src < net->src_addr || src > net->last_addr) { if (frnd_ttl > 1) frnd_ttl--; else goto not_for_friend; } if (szmic || size > 15) { hdr |= true << SEG_HDR_SHIFT; hdr |= szmic << SZMIC_HDR_SHIFT; hdr |= (seqZero & SEQ_ZERO_MASK) << SEQ_ZERO_HDR_SHIFT; hdr |= SEG_MAX(size) << SEGN_HDR_SHIFT; } if (friend_packet_queue(net, iv_index, false, frnd_ttl, seq, src, dst, hdr, data, size)) return true; } not_for_friend: return mesh_model_rx(net->node, szmic, seqAuth, seq, iv_index, ttl, net_idx, src, dst, key_aid, data, size); } static bool match_frnd_sar_dst(const void *a, const void *b) { const struct mesh_friend_msg *frnd_msg = a; uint16_t dst = L_PTR_TO_UINT(b); return frnd_msg->dst == dst; } static void friend_seg_rxed(struct mesh_net *net, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t src, uint16_t dst, uint32_t hdr, const uint8_t *data, uint8_t size) { struct mesh_friend *frnd = NULL; struct mesh_friend_msg *frnd_msg = NULL; uint8_t cnt; uint8_t segN = hdr & 0x1f; uint8_t segO = ((hdr >> 5) & 0x1f); uint32_t expected = 0xffffffff >> (31 - segN); uint32_t this_seg_flag = 0x00000001 << segO; uint32_t largest = (0xffffffff << segO) & expected; uint32_t hdr_key = hdr & HDR_KEY_MASK; frnd = l_queue_find(net->friends, match_frnd_dst, L_UINT_TO_PTR(dst)); if (!frnd) return; if (frnd->last_hdr == hdr_key) { /* We are no longer receiving this msg. Resend final ACK */ send_frnd_ack(net, dst, src, frnd->last_hdr, 0xffffffff); return; } /* Check if we have a SAR-in-progress that matches incoming segment */ frnd_msg = l_queue_find(net->frnd_msgs, match_frnd_sar_dst, L_UINT_TO_PTR(dst)); if (frnd_msg) { /* Flush if SZMICN or IV Index has changed */ if (frnd_msg->iv_index != iv_index) frnd_msg->u.s12[0].hdr = 0; /* Flush incomplete old SAR message if it doesn't match */ if ((frnd_msg->u.s12[0].hdr & HDR_KEY_MASK) != hdr_key) { l_queue_remove(net->frnd_msgs, frnd_msg); l_free(frnd_msg); frnd_msg = NULL; } } if (!frnd_msg) { frnd_msg = mesh_friend_msg_new(segN); frnd_msg->iv_index = iv_index; frnd_msg->src = src; frnd_msg->dst = dst; frnd_msg->ttl = ttl; l_queue_push_tail(net->frnd_msgs, frnd_msg); } else if (frnd_msg->flags & this_seg_flag) /* Ignore dup segs */ return; cnt = frnd_msg->cnt_in; frnd_msg->flags |= this_seg_flag; frnd_msg->u.s12[cnt].hdr = hdr; frnd_msg->u.s12[cnt].seq = seq; memcpy(frnd_msg->u.s12[cnt].data, data, size); /* Last segment could be short */ if (segN == segO) frnd_msg->last_len = size; l_info("RXed Seg %d, Flags %8.8x (cnt: %d)", segO, frnd_msg->flags, cnt); /* In reality, if one of these is true, then *both* must be true */ if ((cnt == segN) || (frnd_msg->flags == expected)) { l_info("Full ACK"); send_frnd_ack(net, dst, src, hdr, frnd_msg->flags); if (frnd_msg->ttl > 1) { frnd_msg->ttl--; /* Add to friends cache */ l_queue_foreach(net->friends, enqueue_friend_pkt, frnd_msg); } /* Remove from "in progress" queue */ l_queue_remove(net->frnd_msgs, frnd_msg); /* TODO Optimization(?): Unicast messages keep this buffer */ l_free(frnd_msg); return; } /* Always ACK if this is the largest outstanding segment */ if ((largest & frnd_msg->flags) == largest) { l_info("Partial ACK"); send_frnd_ack(net, dst, src, hdr, frnd_msg->flags); } frnd_msg->cnt_in++; } static bool seg_rxed(struct mesh_net *net, bool frnd, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t net_idx, uint16_t src, uint16_t dst, uint8_t key_aid, bool szmic, uint16_t seqZero, uint8_t segO, uint8_t segN, const uint8_t *data, uint8_t size) { struct mesh_sar *sar_in = NULL; uint16_t seg_off = 0; uint32_t expected, this_seg_flag, largest, seqAuth; bool reset_seg_to = true; /* * DST could receive additional Segments after * completing due to a lost ACK, so re-ACK and discard */ sar_in = l_queue_find(net->sar_in, match_sar_remote, L_UINT_TO_PTR(src)); /* Discard *old* incoming-SAR-in-progress if this segment newer */ seqAuth = seq_auth(seq, seqZero); if (sar_in && (sar_in->seqAuth != seqAuth || sar_in->iv_index != iv_index)) { bool newer; if (iv_index > sar_in->iv_index) newer = true; else if (iv_index == sar_in->iv_index) newer = seqAuth > sar_in->seqAuth; else newer = false; if (newer) { /* Cancel Old, start New */ l_queue_remove(net->sar_in, sar_in); mesh_sar_free(sar_in); sar_in = NULL; } else /* Ignore Old */ return false; } expected = 0xffffffff >> (31 - segN); if (sar_in) { l_info("RXed (old: %04x %06x size:%d) %d of %d", seqZero, seq, size, segO, segN); /* Sanity Check--> certain things must match */ if (SEG_MAX(sar_in->len) != segN || sar_in->key_aid != key_aid) return false; if (sar_in->flags == expected) { /* Re-Send ACK for full msg */ if (!net->friend_addr) send_net_ack(net, sar_in, expected); return true; } } else { uint16_t len = MAX_SEG_TO_LEN(segN); l_info("RXed (new: %04x %06x size: %d len: %d) %d of %d", seqZero, seq, size, len, segO, segN); l_debug("Queue Size: %d", l_queue_length(net->sar_in)); sar_in = mesh_sar_new(len); sar_in->seqAuth = seqAuth; sar_in->iv_index = iv_index; sar_in->src = dst; sar_in->remote = src; sar_in->seqZero = seqZero; sar_in->key_aid = key_aid; sar_in->len = len; sar_in->last_seg = 0xff; if (!net->friend_addr) sar_in->msg_timeout = l_timeout_create(MSG_TO, inmsg_to, net, NULL); l_debug("First Seg %4.4x", sar_in->flags); l_queue_push_head(net->sar_in, sar_in); } /* print_packet("Seg", data, size); */ seg_off = segO * MAX_SEG_LEN; memcpy(sar_in->buf + seg_off, data, size); this_seg_flag = 0x00000001 << segO; /* Don't reset Seg TO or NAK if we already have this seg */ if (this_seg_flag & sar_in->flags) reset_seg_to = false; sar_in->flags |= this_seg_flag; sar_in->ttl = ttl; l_debug("Have Frags %4.4x", sar_in->flags); /* Msg length only definitive on last segment */ if (segO == segN) sar_in->len = segN * MAX_SEG_LEN + size; if (sar_in->flags == expected) { /* Got it all */ if (!net->friend_addr) send_net_ack(net, sar_in, expected); msg_rxed(net, frnd, iv_index, ttl, seq, net_idx, sar_in->remote, dst, key_aid, szmic, sar_in->seqZero, sar_in->buf, sar_in->len); /* Kill Inter-Seg timeout */ l_timeout_remove(sar_in->seg_timeout); sar_in->seg_timeout = NULL; return true; } if (reset_seg_to) { /* Restart Inter-Seg Timeout */ l_timeout_remove(sar_in->seg_timeout); /* if this is the largest outstanding segment, send NAK now */ if (!net->friend_addr) { largest = (0xffffffff << segO) & expected; if ((largest & sar_in->flags) == largest) send_net_ack(net, sar_in, sar_in->flags); sar_in->seg_timeout = l_timeout_create(SEG_TO, inseg_to, net, NULL); } else largest = 0; } else largest = 0; l_debug("NAK: %d expected:%08x largest:%08x flags:%08x", reset_seg_to, expected, largest, sar_in->flags); return false; } static bool ctl_received(struct mesh_net *net, bool frnd, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t src, uint16_t dst, uint8_t opcode, int8_t rssi, const uint8_t *pkt, uint8_t len) { uint8_t msg[12]; uint8_t rsp_ttl = DEFAULT_TTL; uint8_t n = 0; if (!frnd && ttl > 1) { uint32_t hdr = opcode << OPCODE_HDR_SHIFT; uint8_t frnd_ttl = ttl - 1; if (friend_packet_queue(net, iv_index, true, frnd_ttl, seq, src, dst, hdr, pkt, len)) return true; } /* Don't process other peoples Unicast destinations */ if (dst < 0x8000 && (dst < net->src_addr || dst > net->last_addr)) return false; switch (opcode) { default: l_error("Unsupported Ctl Opcode: %2.2x", opcode); break; case NET_OP_FRND_POLL: if (len != 1 || ttl) return false; print_packet("Rx-NET_OP_FRND_POLL", pkt, len); friend_poll(net, src, !!(pkt[0]), l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(src))); break; case NET_OP_FRND_UPDATE: if (ttl) return false; print_packet("Rx-NET_OP_FRND_UPDATE", pkt, len); lpn_process_beacon(net, pkt, len, 0); break; case NET_OP_FRND_REQUEST: if (!net->friend_enable) return false; if (!IS_ALL_NODES(dst) && dst != FRIENDS_ADDRESS) return false; if (len != 10 || ttl) return false; print_packet("Rx-NET_OP_FRND_REQUEST", pkt, len); friend_request(net, src, pkt[0], pkt[1], l_get_be32(pkt + 1) & 0xffffff, l_get_be16(pkt + 5), pkt[7], l_get_be16(pkt + 8), rssi); break; case NET_OP_FRND_OFFER: if (len != 6 || ttl) return false; print_packet("Rx-NET_OP_FRND_OFFER", pkt, len); frnd_offer(net, src, pkt[0], pkt[1], pkt[2], (int8_t) pkt[3], rssi, l_get_be16(pkt + 4)); break; case NET_OP_FRND_CLEAR_CONFIRM: if (len != 4) return false; print_packet("Rx-NET_OP_FRND_CLEAR_CONFIRM", pkt, len); friend_clear_confirm(net, src, l_get_be16(pkt), l_get_be16(pkt + 2)); break; case NET_OP_FRND_CLEAR: if (len != 4 || dst != net->src_addr) return false; print_packet("Rx-NET_OP_FRND_CLEAR", pkt, len); friend_clear(net, src, l_get_be16(pkt), l_get_be16(pkt + 2), l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(l_get_be16(pkt)))); l_info("Remaining Friends: %d", l_queue_length(net->friends)); break; case NET_OP_PROXY_SUB_ADD: if (ttl) return false; print_packet("Rx-NET_OP_PROXY_SUB_ADD", pkt, len); friend_sub_add(net, l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(src)), pkt, len); break; case NET_OP_PROXY_SUB_REMOVE: if (ttl) return false; print_packet("Rx-NET_OP_PROXY_SUB_REMOVE", pkt, len); friend_sub_del(net, l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(src)), pkt, len); break; case NET_OP_PROXY_SUB_CONFIRM: if (ttl) return false; print_packet("Rx-NET_OP_PROXY_SUB_CONFIRM", pkt, len); break; case NET_OP_HEARTBEAT: if (net->heartbeat.sub_enabled && src == net->heartbeat.sub_src) { uint8_t hops = pkt[0] - ttl + 1; print_packet("Rx-NET_OP_HEARTBEAT", pkt, len); if (net->heartbeat.sub_count != 0xffff) net->heartbeat.sub_count++; if (net->heartbeat.sub_min_hops > hops) net->heartbeat.sub_min_hops = hops; if (net->heartbeat.sub_max_hops < hops) net->heartbeat.sub_max_hops = hops; l_info("HB: cnt:%4.4x min:%2.2x max:%2.2x", net->heartbeat.sub_count, net->heartbeat.sub_min_hops, net->heartbeat.sub_max_hops); } break; } if (n) { mesh_net_transport_send(net, 0, false, mesh_net_get_iv_index(net), rsp_ttl, 0, dst & 0x8000 ? 0 : dst, src, msg, n); } return true; } static bool find_fast_hash(const void *a, const void *b) { const uint64_t *entry = a; const uint64_t *test = b; return *entry == *test; } static bool check_fast_cache(uint64_t hash) { void *found = l_queue_find(fast_cache, find_fast_hash, &hash); uint64_t *new_hash; if (found) return false; if (l_queue_length(fast_cache) >= FAST_CACHE_SIZE) new_hash = l_queue_pop_head(fast_cache); else new_hash = l_malloc(sizeof(hash)); *new_hash = hash; l_queue_push_tail(fast_cache, new_hash); return true; } static bool match_by_dst(const void *a, const void *b) { const struct mesh_destination *dest = a; uint16_t dst = L_PTR_TO_UINT(b); return dest->dst == dst; } static void send_relay_pkt(struct mesh_net *net, uint8_t *data, uint8_t size) { uint8_t packet[30]; struct mesh_io *io = net->io; struct mesh_io_send_info info = { .type = MESH_IO_TIMING_TYPE_GENERAL, .u.gen.interval = net->relay.interval, .u.gen.cnt = net->relay.count, .u.gen.min_delay = DEFAULT_MIN_DELAY, .u.gen.max_delay = DEFAULT_MAX_DELAY }; packet[0] = MESH_AD_TYPE_NETWORK; memcpy(packet + 1, data, size); mesh_io_send(io, &info, packet, size + 1); } static void send_msg_pkt(struct mesh_net *net, uint8_t *packet, uint8_t size) { struct mesh_io *io = net->io; struct mesh_io_send_info info; struct net_queue_data net_data = { .info = NULL, .data = packet + 1, .len = size - 1, .relay_advice = RELAY_NONE, }; /* Send to local nodes first */ l_queue_foreach(nets, net_rx, &net_data); if (net_data.relay_advice == RELAY_DISALLOWED) return; packet[0] = MESH_AD_TYPE_NETWORK; info.type = MESH_IO_TIMING_TYPE_GENERAL; info.u.gen.interval = net->tx_interval; info.u.gen.cnt = net->tx_cnt; info.u.gen.min_delay = DEFAULT_MIN_DELAY; /* No extra randomization when sending regular mesh messages */ info.u.gen.max_delay = DEFAULT_MIN_DELAY; mesh_io_send(io, &info, packet, size); } static uint16_t key_id_to_net_idx(struct mesh_net *net, uint32_t key_id) { struct mesh_subnet *subnet; if (!net) return NET_IDX_INVALID; subnet = l_queue_find(net->subnets, match_key_id, L_UINT_TO_PTR(key_id)); if (subnet) return subnet->idx; else return NET_IDX_INVALID; } static enum _relay_advice packet_received(void *user_data, uint32_t key_id, uint32_t iv_index, const void *data, uint8_t size, int8_t rssi) { struct mesh_net *net = user_data; const uint8_t *msg = data; uint8_t app_msg_len; uint8_t net_ttl, net_key_id, net_segO, net_segN, net_opcode; uint32_t net_seq, cache_cookie; uint16_t net_src, net_dst, net_seqZero; uint16_t net_idx; uint8_t packet[31]; bool net_ctl, net_segmented, net_szmic, net_relay; struct mesh_friend *net_frnd = NULL; bool drop = false; /* Tester--Drop 90% of packets */ /* l_getrandom(&iv_flag, 1); */ /* if (iv_flag%10<9) drop = true; */ memcpy(packet + 2, data, size); if (!drop) print_packet("RX: Network [clr] :", packet + 2, size); net_idx = key_id_to_net_idx(net, key_id); if (net_idx == NET_IDX_INVALID) return RELAY_NONE; if (!mesh_crypto_packet_parse(packet + 2, size, &net_ctl, &net_ttl, &net_seq, &net_src, &net_dst, &cache_cookie, &net_opcode, &net_segmented, &net_key_id, &net_szmic, &net_relay, &net_seqZero, &net_segO, &net_segN, &msg, &app_msg_len)) { l_error("Failed to parse packet content"); return RELAY_NONE; } /* Ignore incoming packets if we are LPN and frnd bit not set */ if (net->friend_addr) { struct mesh_subnet *subnet; subnet = l_queue_find(net->subnets, match_key_id, L_UINT_TO_PTR(key_id)); if (subnet) return RELAY_NONE; /* If the queue is empty, stop polling */ if (net_ctl && net_opcode == NET_OP_FRND_UPDATE && !msg[5]) frnd_poll_cancel(net); else frnd_poll(net, false); } else if (net_dst == 0) { l_error("illegal parms: DST: %4.4x Ctl: %d TTL: %2.2x", net_dst, net_ctl, net_ttl); return RELAY_NONE; } /* Ignore if we originally sent this */ if (is_us(net, net_src, true)) return RELAY_NONE; if (drop) { l_info("Dropping SEQ 0x%06x", net_seq); return RELAY_NONE; } l_debug("check %08x", cache_cookie); /* As a Relay, suppress repeats of last N packets that pass through */ /* The "cache_cookie" should be unique part of App message */ if (msg_in_cache(net, net_src, net_seq, cache_cookie)) return RELAY_NONE; l_debug("RX: Network %04x -> %04x : TTL 0x%02x : IV : %8.8x SEQ 0x%06x", net_src, net_dst, net_ttl, iv_index, net_seq); if (is_us(net, net_dst, false) || is_lpn_friend(net, net_src, !!(net_frnd)) || (net_ctl && net_opcode == NET_OP_HEARTBEAT)) { l_info("RX: App 0x%04x -> 0x%04x : TTL 0x%02x : SEQ 0x%06x", net_src, net_dst, net_ttl, net_seq); l_debug("seq:%x seq0:%x", net_seq, net_seqZero); if (net_ctl) { l_debug("CTL - %4.4x RX", net_seqZero); if (net_opcode == NET_OP_SEG_ACKNOWLEDGE) { /* Illegal to send ACK to non-Unicast Addr */ if (net_dst & 0x8000) return RELAY_NONE; /* print_packet("Got ACK", msg, app_msg_len); */ /* Pedantic check for correct size */ if (app_msg_len != 7) return RELAY_NONE; /* If this is an ACK to our friend queue-only */ if (is_lpn_friend(net, net_dst, true)) friend_ack_rxed(net, iv_index, net_seq, net_src, net_dst, msg); else ack_received(net, false, net_src, net_dst, net_seqZero, l_get_be32(msg + 3)); } else { ctl_received(net, !!(net_frnd), iv_index, net_ttl, net_seq, net_src, net_dst, net_opcode, rssi, msg, app_msg_len); } } else if (net_segmented) { /* If we accept SAR packets to non-Unicast, then * Friend Sar at least needs to be Unicast Only */ if (is_lpn_friend(net, net_dst, true) && !(net_dst & 0x8000)) { /* Check TTL >= 2 before accepting segments * for Friends */ if (net_ttl >= 2) { friend_seg_rxed(net, iv_index, net_ttl, net_seq, net_src, net_dst, l_get_be32(packet + 2 + 9), msg, app_msg_len); } } else { seg_rxed(net, net_frnd, iv_index, net_ttl, net_seq, net_idx, net_src, net_dst, net_key_id, net_szmic, net_seqZero, net_segO, net_segN, msg, app_msg_len); } } else { msg_rxed(net, net_frnd, iv_index, net_ttl, net_seq, net_idx, net_src, net_dst, net_key_id, false, net_seq & SEQ_ZERO_MASK, msg, app_msg_len); } if (!!(net_frnd)) l_info("Ask for more data!"); /* If this is one of our Unicast addresses, disallow relay */ if (IS_UNICAST(net_dst)) return RELAY_DISALLOWED; } /* If relay not enable, or no more hops allowed */ if (!net->relay.enable || net_ttl < 0x02 || net_frnd) return RELAY_NONE; /* Group or Virtual destinations should *always* be relayed */ if (IS_GROUP(net_dst) || IS_VIRTUAL(net_dst)) return RELAY_ALWAYS; /* Unicast destinations for other nodes *may* be relayed */ else if (IS_UNICAST(net_dst)) return RELAY_ALLOWED; /* Otherwise, do not make a relay decision */ else return RELAY_NONE; } static void net_rx(void *net_ptr, void *user_data) { struct net_queue_data *data = user_data; struct mesh_net *net = net_ptr; enum _relay_advice relay_advice; uint8_t *out; size_t out_size; uint32_t key_id; int8_t rssi = 0; bool ivi_net = !!(net->iv_index & 1); bool ivi_pkt = !!(data->data[0] & 0x80); /* if IVI flag differs, use previous IV Index */ uint32_t iv_index = net->iv_index - (ivi_pkt ^ ivi_net); key_id = net_key_decrypt(iv_index, data->data, data->len, &out, &out_size); if (!key_id) return; print_packet("RX: Network [enc] :", data->data, data->len); if (data->info) { net->instant = data->info->instant; net->chan = data->info->chan; rssi = data->info->rssi; } relay_advice = packet_received(net, key_id, iv_index, out, out_size, rssi); if (relay_advice > data->relay_advice) { data->iv_index = iv_index; data->relay_advice = relay_advice; data->key_id = key_id; data->net = net; data->out = out; data->out_size = out_size; } } static void net_msg_recv(void *user_data, struct mesh_io_recv_info *info, const uint8_t *data, uint16_t len) { uint64_t hash; bool isNew; struct net_queue_data net_data = { .info = info, .data = data + 1, .len = len - 1, .relay_advice = RELAY_NONE, }; if (len < 9) return; hash = l_get_le64(data + 1); /* Only process packet once per reception */ isNew = check_fast_cache(hash); if (!isNew) return; l_queue_foreach(nets, net_rx, &net_data); if (net_data.relay_advice == RELAY_ALWAYS || net_data.relay_advice == RELAY_ALLOWED) { uint8_t ttl = net_data.out[1] & TTL_MASK; net_data.out[1] &= ~TTL_MASK; net_data.out[1] |= ttl - 1; net_key_encrypt(net_data.key_id, net_data.iv_index, net_data.out, net_data.out_size); send_relay_pkt(net_data.net, net_data.out, net_data.out_size); } } static void set_network_beacon(void *a, void *b) { struct mesh_subnet *subnet = a; struct mesh_net *net = b; uint8_t beacon_data[22]; if (!create_secure_beacon(net, subnet, beacon_data)) return; if (memcmp(&subnet->snb.beacon[1], beacon_data, sizeof(beacon_data)) == 0) return; memcpy(&subnet->snb.beacon[1], beacon_data, sizeof(beacon_data)); if (net->beacon_enable && !net->friend_addr) { print_packet("Set My Beacon to", beacon_data, sizeof(beacon_data)); start_network_beacon(subnet, net); } if (l_queue_length(net->friends)) { struct mesh_friend_msg update = { .src = net->src_addr, .iv_index = mesh_net_get_iv_index(net), .last_len = 7, .ctl = true, }; update.u.one[0].hdr = NET_OP_FRND_UPDATE << OPCODE_HDR_SHIFT; update.u.one[0].seq = mesh_net_next_seq_num(net); update.u.one[0].data[0] = NET_OP_FRND_UPDATE; update.u.one[0].data[1] = beacon_data[3]; l_put_be32(net->iv_index, update.u.one[0].data + 2); update.u.one[0].data[6] = 0x01; /* More Data */ /* print_packet("Frnd-Beacon-SRC", * beacon_data, sizeof(beacon_data)); */ /* print_packet("Frnd-Update", update.u.one[0].data, 6); */ l_queue_foreach(net->friends, enqueue_update, &update); } } static void iv_upd_to(struct l_timeout *upd_timeout, void *user_data) { struct mesh_net *net = user_data; switch (net->iv_upd_state) { case IV_UPD_UPDATING: if (l_queue_length(net->sar_out)) { l_info("don't leave IV Update until sar_out empty"); l_timeout_modify(net->iv_update_timeout, 10); break; } l_debug("iv_upd_state = IV_UPD_NORMAL_HOLD"); net->iv_upd_state = IV_UPD_NORMAL_HOLD; l_timeout_modify(net->iv_update_timeout, IV_IDX_UPD_MIN); if (net->iv_update) mesh_net_set_seq_num(net, 0); net->iv_update = false; mesh_config_write_iv_index(node_config_get(net->node), net->iv_index, false); l_queue_foreach(net->subnets, set_network_beacon, net); mesh_net_flush_msg_queues(net); break; case IV_UPD_INIT: case IV_UPD_NORMAL_HOLD: case IV_UPD_NORMAL: l_timeout_remove(upd_timeout); net->iv_update_timeout = NULL; l_debug("iv_upd_state = IV_UPD_NORMAL"); net->iv_upd_state = IV_UPD_NORMAL; if (net->iv_update) mesh_net_set_seq_num(net, 0); net->iv_update = false; if (net->seq_num > IV_UPDATE_SEQ_TRIGGER) mesh_net_iv_index_update(net); break; } } static int key_refresh_phase_two(struct mesh_net *net, uint16_t idx) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet || !subnet->net_key_upd) return MESH_STATUS_INVALID_NETKEY; l_info("Key refresh procedure phase 2: start using new net TX keys"); subnet->key_refresh = 1; subnet->net_key_tx = subnet->net_key_upd; /* TODO: Provisioner may need to stay in phase three until * it hears beacons from all the nodes */ subnet->kr_phase = KEY_REFRESH_PHASE_TWO; set_network_beacon(subnet, net); if (net->friend_addr) frnd_key_refresh(net, 2); else l_queue_foreach(net->friends, frnd_kr_phase2, net); mesh_config_net_key_set_phase(node_config_get(net->node), idx, KEY_REFRESH_PHASE_TWO); return MESH_STATUS_SUCCESS; } static int key_refresh_finish(struct mesh_net *net, uint16_t idx) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet || !subnet->net_key_upd) return MESH_STATUS_INVALID_NETKEY; if (subnet->kr_phase == KEY_REFRESH_PHASE_NONE) return MESH_STATUS_SUCCESS; l_info("Key refresh phase 3: use new keys only, discard old ones"); /* Switch to using new keys, discard old ones */ net_key_unref(subnet->net_key_cur); subnet->net_key_tx = subnet->net_key_cur = subnet->net_key_upd; subnet->net_key_upd = 0; subnet->key_refresh = 0; subnet->kr_phase = KEY_REFRESH_PHASE_NONE; set_network_beacon(subnet, net); if (net->friend_addr) frnd_key_refresh(net, 3); else l_queue_foreach(net->friends, frnd_kr_phase3, net); mesh_config_net_key_set_phase(node_config_get(net->node), idx, KEY_REFRESH_PHASE_NONE); return MESH_STATUS_SUCCESS; } static void update_kr_state(struct mesh_subnet *subnet, bool kr, uint32_t id) { /* Figure out the key refresh phase */ if (kr) { if (id == subnet->net_key_upd) { l_debug("Beacon based KR phase 2 change"); key_refresh_phase_two(subnet->net, subnet->idx); } } else { if (id == subnet->net_key_upd) { l_debug("Beacon based KR phase 3 change"); key_refresh_finish(subnet->net, subnet->idx); } } } static void update_iv_ivu_state(struct mesh_net *net, uint32_t iv_index, bool ivu) { uint32_t local_iv_index; bool local_ivu; /* Save original settings to differentiate what has changed */ local_iv_index = net->iv_index; local_ivu = net->iv_update; if ((iv_index - ivu) > (local_iv_index - local_ivu)) { /* Don't accept IV_Index changes when performing SAR Out */ if (l_queue_length(net->sar_out)) return; } /* If first beacon seen, accept without judgement */ if (net->iv_upd_state == IV_UPD_INIT) { if (ivu) { /* Other devices will be accepting old or new iv_index, * but we don't know how far through update they are. * Starting permissive state will allow us maximum * (96 hours) to resync */ l_info("iv_upd_state = IV_UPD_UPDATING"); net->iv_upd_state = IV_UPD_UPDATING; net->iv_update_timeout = l_timeout_create( IV_IDX_UPD_MIN, iv_upd_to, net, NULL); } else { l_info("iv_upd_state = IV_UPD_NORMAL"); net->iv_upd_state = IV_UPD_NORMAL; } } else if (ivu) { /* Ignore beacons with IVU if they come too soon */ if (!local_ivu && net->iv_upd_state == IV_UPD_NORMAL_HOLD) { l_error("Update attempted too soon"); return; } if (!local_ivu) { l_info("iv_upd_state = IV_UPD_UPDATING"); net->iv_upd_state = IV_UPD_UPDATING; net->iv_update_timeout = l_timeout_create( IV_IDX_UPD_MIN, iv_upd_to, net, NULL); } } else if (local_ivu) { l_error("IVU clear attempted too soon"); return; } if ((iv_index - ivu) > (local_iv_index - local_ivu)) mesh_net_set_seq_num(net, 0); if (ivu != net->iv_update || local_iv_index != net->iv_index) { struct mesh_config *cfg = node_config_get(net->node); mesh_config_write_iv_index(cfg, iv_index, ivu); } net->iv_index = iv_index; net->iv_update = ivu; } static void process_beacon(void *net_ptr, void *user_data) { struct mesh_net *net = net_ptr; const uint8_t *buf = *(uint8_t **)user_data; uint32_t ivi; bool ivu, kr, local_kr; struct mesh_subnet *subnet; uint32_t key_id; ivi = l_get_be32(buf + 10); /* Ignore out-of-range IV_Index for this network */ if ((net->iv_index + IV_IDX_DIFF_RANGE < ivi) || (ivi < net->iv_index)) return; /* Ignore Network IDs unknown to this mesh universe */ key_id = net_key_network_id(buf + 2); if (!key_id) return; subnet = l_queue_find(net->subnets, match_key_id, L_UINT_TO_PTR(key_id)); if (!subnet) return; /* Get IVU and KR boolean bits from beacon */ ivu = !!(buf[1] & 0x02); kr = !!(buf[1] & 0x01); local_kr = !!(subnet->kr_phase != KEY_REFRESH_PHASE_TWO); if (net->iv_upd_state != IV_UPD_INIT) { /* Ignore beacons that indicate *no change* */ if (!memcmp(&subnet->snb.beacon[1], buf, 22)) { subnet->snb.observed++; return; } } /* Validate beacon before accepting */ if (!net_key_snb_check(key_id, ivi, kr, ivu, l_get_be64(buf + 14))) { l_error("mesh_crypto_beacon verify failed"); return; } /* We have officially *seen* this beacon now */ subnet->snb.observed++; update_iv_ivu_state(net, ivi, ivu); update_kr_state(subnet, kr, key_id); if (ivi != net->iv_index || ivu != net->iv_update || kr != local_kr) set_network_beacon(subnet, net); } static void lpn_process_beacon(void *user_data, const void *data, uint8_t size, int8_t rssi) { struct mesh_net *net = user_data; const uint8_t *buf = data; uint32_t ivi; bool ivu, kr, local_kr; struct mesh_subnet *subnet; bool kr_transition = false; /* print_packet("lpn: Secure Net Beacon RXed", data, size); */ kr = !!(buf[0] & 0x01); ivu = !!(buf[0] & 0x02); ivi = l_get_be32(buf + 1); l_debug("KR: %d -- IVU: %d -- IVI: %8.8x", kr, ivu, ivi); /* TODO: figure out actual network index (i.e., friendship subnet) */ subnet = get_primary_subnet(net); if (!subnet) return; local_kr = (subnet->kr_phase == KEY_REFRESH_PHASE_TWO); /* Don't bother going further if nothing has changed */ if (local_kr == kr && ivi == net->iv_index && ivu == net->iv_update && net->iv_upd_state != IV_UPD_INIT) return; update_iv_ivu_state(net, ivi, ivu); if (kr) update_kr_state(subnet, kr_transition, subnet->net_key_upd); else update_kr_state(subnet, kr_transition, subnet->net_key_cur); } static void beacon_recv(void *user_data, struct mesh_io_recv_info *info, const uint8_t *data, uint16_t len) { const uint8_t *ptr = data + 1; if (len != 23 || data[1] != 0x01) return; l_debug("KR: %d -- IVU: %d -- IV: %8.8x", data[2] & 1, !!(data[2] & 2), l_get_be32(data + 11)); l_queue_foreach(nets, process_beacon, &ptr); } bool mesh_net_set_beacon_mode(struct mesh_net *net, bool enable) { if (!net || !IS_UNASSIGNED(net->friend_addr)) return false; if (net->beacon_enable != enable) { uint8_t type = MESH_AD_TYPE_BEACON; net->beacon_enable = enable; if (!enable) mesh_io_send_cancel(net->io, &type, 1); l_queue_foreach(net->subnets, start_network_beacon, net); } return true; } /* This function is called when network keys are restored from storage. */ bool mesh_net_set_key(struct mesh_net *net, uint16_t idx, const uint8_t *key, const uint8_t *new_key, uint8_t phase) { struct mesh_subnet *subnet; /* Current key must be always present */ if (!key) return false; /* If key refresh is in progress, a new key must be present */ if (phase != KEY_REFRESH_PHASE_NONE && !new_key) return false; /* Check if the subnet with the specified index already exists */ subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (subnet) return false; subnet = add_key(net, idx, key); if (!subnet) return false; if (new_key && phase) subnet->net_key_upd = net_key_add(new_key); /* Preserve key refresh state to generate secure beacon flags*/ if (phase == KEY_REFRESH_PHASE_TWO) { subnet->key_refresh = 1; subnet->net_key_tx = subnet->net_key_upd; } subnet->kr_phase = phase; set_network_beacon(subnet, net); if (net->io) start_network_beacon(subnet, net); return true; } static bool is_this_net(const void *a, const void *b) { return a == b; } bool mesh_net_attach(struct mesh_net *net, struct mesh_io *io) { bool first; if (!net) return false; first = l_queue_isempty(nets); if (first) { if (!nets) nets = l_queue_new(); if (!fast_cache) fast_cache = l_queue_new(); l_info("Register io cb"); mesh_io_register_recv_cb(io, MESH_IO_FILTER_BEACON, beacon_recv, NULL); mesh_io_register_recv_cb(io, MESH_IO_FILTER_NET, net_msg_recv, NULL); l_queue_foreach(net->subnets, start_network_beacon, net); } if (l_queue_find(nets, is_this_net, net)) return false; l_queue_push_head(nets, net); net->io = io; return true; } struct mesh_io *mesh_net_detach(struct mesh_net *net) { struct mesh_io *io; uint8_t type = 0; if (!net || !net->io) return NULL; io = net->io; mesh_io_send_cancel(net->io, &type, 1); mesh_io_deregister_recv_cb(io, MESH_IO_FILTER_BEACON); mesh_io_deregister_recv_cb(io, MESH_IO_FILTER_NET); net->io = NULL; l_queue_remove(nets, net); return io; } bool mesh_net_iv_index_update(struct mesh_net *net) { if (net->iv_upd_state != IV_UPD_NORMAL) return false; l_info("iv_upd_state = IV_UPD_UPDATING"); mesh_net_flush_msg_queues(net); if (!mesh_config_write_iv_index(node_config_get(net->node), net->iv_index + 1, true)) return false; net->iv_upd_state = IV_UPD_UPDATING; net->iv_index++; net->iv_update = true; l_queue_foreach(net->subnets, set_network_beacon, net); net->iv_update_timeout = l_timeout_create( IV_IDX_UPD_MIN, iv_upd_to, net, NULL); return true; } void mesh_net_sub_list_add(struct mesh_net *net, uint16_t addr) { uint8_t msg[11] = { PROXY_OP_FILTER_ADD }; uint8_t n = 1; l_put_be16(addr, msg + n); n += 2; mesh_net_transport_send(net, 0, false, mesh_net_get_iv_index(net), 0, 0, 0, 0, msg, n); } void mesh_net_sub_list_del(struct mesh_net *net, uint16_t addr) { uint8_t msg[11] = { PROXY_OP_FILTER_DEL }; uint8_t n = 1; l_put_be16(addr, msg + n); n += 2; mesh_net_transport_send(net, 0, false, mesh_net_get_iv_index(net), 0, 0, 0, 0, msg, n); } /* TODO: change to use net index */ bool mesh_net_set_friend(struct mesh_net *net, uint16_t friend_addr) { if (!net) return false; net->bea_id = 0; l_info("Set Frnd addr: %4.4x", friend_addr); if (!friend_addr) trigger_heartbeat(net, FEATURE_LPN, false); else trigger_heartbeat(net, FEATURE_LPN, true); net->friend_addr = friend_addr; set_network_beacon(get_primary_subnet(net), net); return true; } uint16_t mesh_net_get_friend(struct mesh_net *net) { if (!net) return 0; return net->friend_addr; } bool mesh_net_dst_reg(struct mesh_net *net, uint16_t dst) { struct mesh_destination *dest = l_queue_find(net->destinations, match_by_dst, L_UINT_TO_PTR(dst)); if (IS_UNASSIGNED(dst) || IS_ALL_NODES(dst)) return false; if (!dest) { dest = l_new(struct mesh_destination, 1); if (dst < 0x8000) l_queue_push_head(net->destinations, dest); else l_queue_push_tail(net->destinations, dest); /* If LPN, and Group/Virtual, add to Subscription List */ if (net->friend_addr) { /* TODO: Fix this garbage */ uint32_t u32_dst[7] = {dst, 0xffffffff}; frnd_sub_add(net, u32_dst); } } dest->dst = dst; dest->ref_cnt++; return true; } bool mesh_net_dst_unreg(struct mesh_net *net, uint16_t dst) { struct mesh_destination *dest = l_queue_find(net->destinations, match_by_dst, L_UINT_TO_PTR(dst)); if (!dest) return false; if (dest->ref_cnt) dest->ref_cnt--; if (dest->ref_cnt) return true; /* TODO: If LPN, and Group/Virtual, remove from Subscription List */ if (net->friend_addr) { /* TODO: Fix this garbage */ uint32_t u32_dst[7] = {dst, 0xffffffff}; frnd_sub_del(net, u32_dst); } l_queue_remove(net->destinations, dest); l_free(dest); return true; } bool mesh_net_flush(struct mesh_net *net) { if (!net) return false; /* TODO mesh-io Flush */ return true; } /* TODO: add net key index */ static bool send_seg(struct mesh_net *net, struct mesh_sar *msg, uint8_t segO) { uint8_t seg_len; uint8_t gatt_data[30]; uint8_t *packet = gatt_data; uint8_t packet_len; uint8_t segN = SEG_MAX(msg->len); uint16_t seg_off = SEG_OFF(segO); uint32_t key_id = 0; uint32_t seq_num = mesh_net_next_seq_num(net); if (segN) { if (msg->len - seg_off > SEG_OFF(1)) seg_len = SEG_OFF(1); else seg_len = msg->len - seg_off; } else { seg_len = msg->len; } /* Start IV Update procedure when we hit our trigger point */ if (!msg->frnd && net->seq_num > IV_UPDATE_SEQ_TRIGGER) mesh_net_iv_index_update(net); l_debug("segN %d segment %d seg_off %d", segN, segO, seg_off); /* print_packet("Sending", msg->buf + seg_off, seg_len); */ { /* TODO: Are we RXing on an LPN's behalf? Then set RLY bit */ if (!mesh_crypto_packet_build(false, msg->ttl, seq_num, msg->src, msg->remote, 0, segN ? true : false, msg->key_aid, msg->szmic, false, msg->seqZero, segO, segN, msg->buf + seg_off, seg_len, packet + 1, &packet_len)) { l_error("Failed to build packet"); return false; } } print_packet("Clr-Net Tx", packet + 1, packet_len); if (msg->frnd_cred && net->friend_addr) key_id = frnd_get_key(net); if (!key_id) { struct mesh_subnet *subnet = get_primary_subnet(net); key_id = subnet->net_key_tx; } if (!net_key_encrypt(key_id, msg->iv_index, packet + 1, packet_len)) { l_error("Failed to encode packet"); return false; } /* print_packet("Step 4", packet + 1, packet_len); */ { char *str; send_msg_pkt(net, packet, packet_len + 1); str = l_util_hexstring(packet + 1, packet_len); l_info("TX: Network %04x -> %04x : %s (%u) : TTL %d : SEQ %06x", msg->src, msg->remote, str, packet_len, msg->ttl, msg->frnd ? msg->seqAuth + segO : seq_num); l_free(str); } msg->last_seg = segO; return true; } void mesh_net_send_seg(struct mesh_net *net, uint32_t net_key_id, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t src, uint16_t dst, uint32_t hdr, const void *seg, uint16_t seg_len) { char *str; uint8_t packet[30]; uint8_t packet_len; bool segmented = !!((hdr >> SEG_HDR_SHIFT) & true); uint8_t app_key_id = (hdr >> KEY_HDR_SHIFT) & KEY_ID_MASK; bool szmic = !!((hdr >> SZMIC_HDR_SHIFT) & true); uint16_t seqZero = (hdr >> SEQ_ZERO_HDR_SHIFT) & SEQ_ZERO_MASK; uint8_t segO = (hdr >> SEGO_HDR_SHIFT) & SEG_MASK; uint8_t segN = (hdr >> SEGN_HDR_SHIFT) & SEG_MASK; /* TODO: Only used for current POLLed segments to LPNs */ l_debug("SEQ: %6.6x", seq + segO); l_debug("SEQ0: %6.6x", seq); l_debug("segO: %d", segO); if (!mesh_crypto_packet_build(false, ttl, seq, src, dst, 0, segmented, app_key_id, szmic, false, seqZero, segO, segN, seg, seg_len, packet + 1, &packet_len)) { l_error("Failed to build packet"); return; } if (!net_key_encrypt(net_key_id, iv_index, packet + 1, packet_len)) { l_error("Failed to encode packet"); return; } /* print_packet("Step 4", packet + 1, packet_len); */ send_msg_pkt(net, packet, packet_len + 1); str = l_util_hexstring(packet + 1, packet_len); l_info("TX: Friend Seg-%d %04x -> %04x : %s (%u) : TTL %d : SEQ %06x", segO, src, dst, str, packet_len, ttl, seq); l_free(str); } bool mesh_net_app_send(struct mesh_net *net, bool frnd_cred, uint16_t src, uint16_t dst, uint8_t key_aid, uint16_t net_idx, uint8_t ttl, uint32_t seq, uint32_t iv_index, bool szmic, const void *msg, uint16_t msg_len, mesh_net_status_func_t status_func, void *user_data) { struct mesh_sar *payload = NULL; uint8_t seg, seg_max; bool result; if (!net || msg_len > 384) return false; if (!src) src = net->src_addr; if (!src || !dst) return false; if (ttl == DEFAULT_TTL) ttl = net->default_ttl; seg_max = SEG_MAX(msg_len); /* First enqueue to any Friends and internal models */ result = msg_rxed(net, false, iv_index, ttl, seq + seg_max, net_idx, src, dst, key_aid, szmic, seq & SEQ_ZERO_MASK, msg, msg_len); /* If successfully enqued or delivered * to Unicast address, we are done */ if (result || src == dst || (dst >= net->src_addr && dst <= net->last_addr)) { /* Adjust our seq_num for "virtual" delivery */ net->seq_num += seg_max; mesh_net_next_seq_num(net); return true; } /* If Segmented, Cancel any OB segmented message to same DST */ if (seg_max) { payload = l_queue_remove_if(net->sar_out, match_sar_remote, L_UINT_TO_PTR(dst)); mesh_sar_free(payload); } /* Setup OTA Network send */ payload = mesh_sar_new(msg_len); memcpy(payload->buf, msg, msg_len); payload->len = msg_len; payload->src = src; payload->remote = dst; payload->ttl = ttl; payload->szmic = szmic; payload->frnd_cred = frnd_cred; payload->key_aid = key_aid; if (seg_max) { payload->flags = 0xffffffff >> (31 - seg_max); payload->seqZero = seq & SEQ_ZERO_MASK; } payload->iv_index = mesh_net_get_iv_index(net); payload->seqAuth = net->seq_num; result = true; if (!IS_UNICAST(dst) && seg_max) { int i; for (i = 0; i < 4; i++) { for (seg = 0; seg <= seg_max && result; seg++) result = send_seg(net, payload, seg); } } else { for (seg = 0; seg <= seg_max && result; seg++) result = send_seg(net, payload, seg); } /* Reliable: Cache; Unreliable: Flush*/ if (result && seg_max && IS_UNICAST(dst)) { l_queue_push_head(net->sar_out, payload); payload->seg_timeout = l_timeout_create(SEG_TO, outseg_to, net, NULL); payload->msg_timeout = l_timeout_create(MSG_TO, outmsg_to, net, NULL); payload->status_func = status_func; payload->user_data = user_data; payload->id = ++net->sar_id_next; } else mesh_sar_free(payload); return result; } void mesh_net_ack_send(struct mesh_net *net, uint32_t key_id, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t src, uint16_t dst, bool rly, uint16_t seqZero, uint32_t ack_flags) { uint32_t hdr; uint8_t data[7]; uint8_t pkt_len; uint8_t pkt[30]; char *str; hdr = NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT; hdr |= rly << RELAY_HDR_SHIFT; hdr |= (seqZero & SEQ_ZERO_MASK) << SEQ_ZERO_HDR_SHIFT; l_put_be32(hdr, data); l_put_be32(ack_flags, data + 3); if (!mesh_crypto_packet_build(true, ttl, seq, src, dst, NET_OP_SEG_ACKNOWLEDGE, false, /* Not Segmented */ 0, /* No Key ID associated */ false, rly, seqZero, 0, 0, /* no segO or segN */ data + 1, 6, pkt + 1, &pkt_len)) { return; } if (!key_id) { struct mesh_subnet *subnet = get_primary_subnet(net); key_id = subnet->net_key_tx; } if (!net_key_encrypt(key_id, iv_index, pkt + 1, pkt_len)) { l_error("Failed to encode packet"); return; } /* print_packet("Step 4", pkt, pkt_len); */ send_msg_pkt(net, pkt, pkt_len + 1); str = l_util_hexstring(pkt + 1, pkt_len); l_info("TX: Friend ACK %04x -> %04x : %s (%u) : TTL %d : SEQ %06x", src, dst, str, pkt_len, ttl, seq); l_free(str); } /* TODO: add net key index */ void mesh_net_transport_send(struct mesh_net *net, uint32_t key_id, bool fast, uint32_t iv_index, uint8_t ttl, uint32_t seq, uint16_t src, uint16_t dst, const uint8_t *msg, uint16_t msg_len) { uint32_t use_seq = seq; uint8_t pkt_len; uint8_t pkt[30]; bool result = false; if (!net->src_addr) return; if (!src) src = net->src_addr; if (src == dst) return; if (ttl == DEFAULT_TTL) ttl = net->default_ttl; /* Range check the Opcode and msg length*/ if (*msg & 0xc0 || (9 + msg_len + 8 > 29)) return; /* Enqueue for Friend if forwardable and from us */ if (!key_id && src >= net->src_addr && src <= net->last_addr) { uint32_t hdr = msg[0] << OPCODE_HDR_SHIFT; uint8_t frnd_ttl = ttl; if (friend_packet_queue(net, iv_index, true, frnd_ttl, mesh_net_next_seq_num(net), src, dst, hdr, msg + 1, msg_len - 1)) { return; } } /* Deliver to Local entities if applicable */ if (!(dst & 0x8000) && src >= net->src_addr && src <= net->last_addr) { result = ctl_received(net, !!(key_id), iv_index, ttl, mesh_net_next_seq_num(net), src, dst, msg[0], 0, msg + 1, msg_len - 1); } if (!key_id) { struct mesh_subnet *subnet = get_primary_subnet(net); key_id = subnet->net_key_tx; use_seq = mesh_net_next_seq_num(net); if (result || (dst >= net->src_addr && dst <= net->last_addr)) return; } if (!mesh_crypto_packet_build(true, ttl, use_seq, src, dst, msg[0], false, 0, false, false, 0, 0, 0, msg + 1, msg_len - 1, pkt + 1, &pkt_len)) return; /* print_packet("Step 2", pkt + 1, pkt_len); */ if (!net_key_encrypt(key_id, iv_index, pkt + 1, pkt_len)) { l_error("Failed to encode packet"); return; } /* print_packet("Step 4", pkt + 1, pkt_len); */ if (dst != 0) { char *str; send_msg_pkt(net, pkt, pkt_len + 1); str = l_util_hexstring(pkt + 1, pkt_len); l_info("TX: Network %04x -> %04x : %s (%u) : TTL %d : SEQ %06x", src, dst, str, pkt_len, ttl, use_seq); l_free(str); } } uint8_t mesh_net_key_refresh_phase_set(struct mesh_net *net, uint16_t idx, uint8_t transition) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet) return MESH_STATUS_INVALID_NETKEY; if (transition == subnet->kr_phase) return MESH_STATUS_SUCCESS; if ((transition != 2 && transition != 3) || transition < subnet->kr_phase) return MESH_STATUS_CANNOT_SET; switch (transition) { case 2: if (key_refresh_phase_two(net, idx) != MESH_STATUS_SUCCESS) return MESH_STATUS_CANNOT_SET; break; case 3: if (key_refresh_finish(net, idx) != MESH_STATUS_SUCCESS) return MESH_STATUS_CANNOT_SET; break; default: return MESH_STATUS_CANNOT_SET; } return MESH_STATUS_SUCCESS; } uint8_t mesh_net_key_refresh_phase_get(struct mesh_net *net, uint16_t idx, uint8_t *phase) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet) return MESH_STATUS_INVALID_NETKEY; *phase = subnet->kr_phase; return MESH_STATUS_SUCCESS; } /* * This function is called when Configuration Server Model receives * a NETKEY_UPDATE command */ int mesh_net_update_key(struct mesh_net *net, uint16_t idx, const uint8_t *value) { struct mesh_subnet *subnet; if (!net) return MESH_STATUS_UNSPECIFIED_ERROR; subnet = l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)); if (!subnet) return MESH_STATUS_INVALID_NETKEY; /* Check if the key has been already successfully updated */ if (subnet->kr_phase == KEY_REFRESH_PHASE_ONE && net_key_confirm(subnet->net_key_upd, value)) return MESH_STATUS_SUCCESS; if (subnet->kr_phase != KEY_REFRESH_PHASE_NONE) return MESH_STATUS_CANNOT_UPDATE; if (subnet->net_key_upd) { net_key_unref(subnet->net_key_upd); l_info("Warning: overwriting new keys"); } /* Preserve starting data */ subnet->net_key_upd = net_key_add(value); if (!subnet->net_key_upd) { l_error("Failed to start key refresh phase one"); return MESH_STATUS_CANNOT_UPDATE; } /* If we are an LPN, generate our keys here */ if (net->friend_addr) frnd_key_refresh(net, 1); else /* If we are a Friend-Node, generate all our new keys */ l_queue_foreach(net->friends, frnd_kr_phase1, L_UINT_TO_PTR(subnet->net_key_upd)); l_info("key refresh phase 1: Key ID %d", subnet->net_key_upd); if (!mesh_config_net_key_update(node_config_get(net->node), idx, value)) return MESH_STATUS_STORAGE_FAIL; subnet->kr_phase = KEY_REFRESH_PHASE_ONE; return MESH_STATUS_SUCCESS; } uint16_t mesh_net_get_features(struct mesh_net *net) { uint16_t features = 0; if (net->relay.enable) features |= FEATURE_RELAY; if (net->proxy_enable) features |= FEATURE_PROXY; if (!l_queue_isempty(net->friends)) features |= FEATURE_FRIEND; if (net->friend_addr != UNASSIGNED_ADDRESS) features |= FEATURE_LPN; return features; } struct mesh_net_heartbeat *mesh_net_heartbeat_get(struct mesh_net *net) { return &net->heartbeat; } void mesh_net_heartbeat_send(struct mesh_net *net) { struct mesh_net_heartbeat *hb = &net->heartbeat; uint8_t msg[4]; int n = 0; if (hb->pub_dst == UNASSIGNED_ADDRESS) return; msg[n++] = NET_OP_HEARTBEAT; msg[n++] = hb->pub_ttl; l_put_be16(hb->features, msg + n); n += 2; mesh_net_transport_send(net, 0, false, mesh_net_get_iv_index(net), hb->pub_ttl, 0, 0, hb->pub_dst, msg, n); } void mesh_net_heartbeat_init(struct mesh_net *net) { struct mesh_net_heartbeat *hb = &net->heartbeat; memset(hb, 0, sizeof(struct mesh_net_heartbeat)); hb->sub_min_hops = 0xff; hb->features = mesh_net_get_features(net); } void mesh_net_uni_range_set(struct mesh_net *net, struct mesh_net_addr_range *range) { net->prov_uni_addr.low = range->low; net->prov_uni_addr.high = range->high; net->prov_uni_addr.next = range->next; } struct mesh_net_addr_range mesh_net_uni_range_get(struct mesh_net *net) { return net->prov_uni_addr; } void mesh_net_set_iv_index(struct mesh_net *net, uint32_t index, bool update) { net->iv_index = index; net->iv_update = update; } void mesh_net_provisioner_mode_set(struct mesh_net *net, bool mode) { net->provisioner = mode; } bool mesh_net_provisioner_mode_get(struct mesh_net *net) { return net->provisioner; } uint16_t mesh_net_get_primary_idx(struct mesh_net *net) { struct mesh_subnet *subnet; if (!net) return NET_IDX_INVALID; subnet = get_primary_subnet(net); if (!subnet) return NET_IDX_INVALID; return subnet->idx; } uint32_t mesh_net_friend_timeout(struct mesh_net *net, uint16_t addr) { struct mesh_friend *frnd = l_queue_find(net->friends, match_by_friend, L_UINT_TO_PTR(addr)); if (!frnd) return 0; else return frnd->poll_timeout; } struct mesh_node *mesh_net_node_get(struct mesh_net *net) { return net->node; } struct l_queue *mesh_net_get_app_keys(struct mesh_net *net) { if (!net) return NULL; if (!net->app_keys) net->app_keys = l_queue_new(); return net->app_keys; } bool mesh_net_have_key(struct mesh_net *net, uint16_t idx) { if (!net) return false; return (l_queue_find(net->subnets, match_key_index, L_UINT_TO_PTR(idx)) != NULL); } bool mesh_net_is_local_address(struct mesh_net *net, uint16_t src, uint16_t count) { const uint16_t last = src + count - 1; if (!net) return false; return (src >= net->src_addr && src <= net->last_addr) && (last >= net->src_addr && last <= net->last_addr); } void mesh_net_set_window_accuracy(struct mesh_net *net, uint8_t accuracy) { if (!net) return; net->window_accuracy = accuracy; } void mesh_net_transmit_params_set(struct mesh_net *net, uint8_t count, uint16_t interval) { if (!net) return; net->tx_interval = interval; net->tx_cnt = count; } void mesh_net_transmit_params_get(struct mesh_net *net, uint8_t *count, uint16_t *interval) { if (!net) return; *interval = net->tx_interval; *count = net->tx_cnt; } struct mesh_io *mesh_net_get_io(struct mesh_net *net) { if (!net) return NULL; return net->io; } struct mesh_prov *mesh_net_get_prov(struct mesh_net *net) { if (!net) return NULL; return net->prov; } void mesh_net_set_prov(struct mesh_net *net, struct mesh_prov *prov) { if (!net) return; net->prov = prov; } uint32_t mesh_net_get_instant(struct mesh_net *net) { return net->instant; }