
dnsperf

DNS
Performance
Tool
Manual
Version 2.1.0
Date May 2, 2014

Copyright ©2002-2014 Nominum, Inc. - All Rights Reserved

This software and documentation is subject to and made available pursuant to the terms of the Nominum
License Agreement, and may be used or copied only in accordance with the terms of that Agreement. This
manual, in whole or in part, may not be reproduced, translated or reduced to any machine-readable form
without prior written approval from Nominum, Incorporated.

Nominum, Incorporated
2000 Seaport Boulevard

Suite 400
Redwood City, CA, 94063

USA
http://www.nominum.com

Centris, Navitas and Vantio are trademarks of Nominum, Incorporated.

All other trademarks are the property of their respective companies.

http://www.nominum.com

dnsperf
dnsperf is an authoritative-server-specific Domain Name Service (DNS) performance testing tool. It is pri-
marily intended for measuring the performance of authoritative DNS servers, but it can also be used for
measuring caching server performance in a closed laboratory environment. For testing caching servers
resolving against the live Internet, the resperf program is preferred.

We recommend that dnsperf and the name server under test be run on separate machines, so that the CPU
usage of dnsperf itself does not slow down the name server. The two machines should be connected with a
fast network, preferably a dedicated Gigabit Ethernet segment. Testing through a router or firewall is not
advisable.

Command Synopsis

dnsperf [-a local_address][-b bufsize] [-c clients] [-d datafile]
[-D] [-e] [-f family] [-h] [-l limit] [-n runs_through_file]
[-p port] [-q num_queries] [-Q max_qps] [-s server_addr]
[-S stats_interval][-t timeout] [-T threads][-u] [-v]
[-x local_port] [-y [algorithm:]name:secret]
Nominum 1

2 dnsperf
dnsperf Options

Option Description

-a local_address Specifies the local address form which to send requests. The
default is the wildcard address.

-b bufsize Sets the size of the socket's send and receive buffers, in kilo-
bytes.

-c clients Enables the local server to act as multiple clients and speci-
fies the number of clients represented by this server. The
server sends requests from multiple sockets.

By default, the local server acts as a single client.

-d datafile Specifies the input data file. If not specified, dnsperf reads
from standard input.

-D Sets the DO (DNSSEC OK) bit in all packets sent, as per
RFC 3225. This also enables EDNS 0, which is required for
DNSSEC.

-e Enables EDNS0, as per RFC 2671, by adding an OPT record
to all packets sent.

-f family Specifies the address family used for sending DNS packets.
The possible values are:

• inet—Use IPv4.

• inet6—Use IPv6.

• any—Either IPv4 or IPv6 as appropriate.

If “any” (the default value) is specified, dnsperf uses which-
ever address family is appropriate for the server to which it is
sending packets.

-h Prints a usage statement and exit.

-l limit Specifies a time limit for the run, in seconds.

-n runs_through_file Specifies a maximum number of runs through the input file.
If no time limit is set, the file is read exactly this many times;
if a time limit is set, the file may be read fewer times.

-p port Sets the port on which the DNS packets are sent. If not speci-
fied, the standard DNS port (53) is used.

Table 1-1 dnsperf options
Nominum

Command Synopsis 3
-q num_queries Sets the maximum number of outstanding requests. When
this value is reached, dnsperf stops sending requests until
either responses are received or its requests time out. The
default value is 100.

-Q max_qps Limits the number of requests per second.

-s server Specifies the name or address of the server to which requests
will be sent. The default is the loopback address, 127.0.0.1.

-t timeout Specifies the request timeout value, in seconds.

After timeout is reached, dnsperf will no longer wait for a
response to a particular request after this many seconds have
elapsed. Default is five seconds.

-T threads Run multiple client threads. By default, dnsperf uses one
thread for sending requests and one thread for receiving
responses. If this option is specified, dnsperf will instead use
N pairs of send/receive threads.

NOTE: Because this process impacts CPU and memory, we
recommend limiting the number of threads.

-u Instructs dnsperf to send DNS dynamic update messages,
rather than queries.

NOTE: The format of the input file is different in this case—
see ”Constructing a Dynamic Update Input File” on page 5.

-v Enables verbose mode, where the command output includes
latency measurements and the DNS RCODE of each
response. In the output, query time outs are reported with the
string "T" (instead of a normal DNS RCODE). An "I" string
in the output indicates the query was interrupted.

-x local_port Specifies the local port from which to send requests. Default
is the wildcard port (0).

-y [algorithm:]name:secret Adds a TSIG record (as per RFC 2845) to all packets sent,
using the specified TSIG key name, secret, and, optionally,
agorithm. The secret is expressed as a base-64 encoded
string. If you do not specify an algorithm, the algorithm
defaults to hmac-md5.

Option Description

Table 1-1 dnsperf options (continued)
Nominum

4 dnsperf
Operational Considerations

Performance testing at the traffic levels involved is essentially a hard real-time application. At a query rate
of 100,000 qps, a 1/100s delay translates into 1000 incoming UDP packets—this is far more than most
operating systems can buffer.

Therefore—on the same LAN as the server under test—run dnsperf on its own machine, ensuring that:

• The machine running dnsperf is at least as fast as the server being tested—otherwise, it may
become a performance bottleneck.

• There are no other applications running on the machine running dnsperf.

Bandwidth

dnsperf makes significant demands on bandwidth. The machine running dnsperf and the server under test
should be connected by a network segment with Gigabit Ethernet (or greater) capacity.

Firewalls

Ensure that no stateful firewalls exist between the caching server and the Internet. As a rule, stateful fire-
walls can’t handle the amount of UDP traffic generated by dnsperf, and may skew test results by:

• Dropping packets.

• Locking up.

• Crashing.

Configuring the Server

The nameserver under test should be configured as an authoritative server, serving one or more zones that
are similar in size (and number) to those the server is expected to serve in production.

Recursion should be disabled for authoritative servers that support it—otherwise, the server’s attempts to
retrieve glue information from the Internet during testing will slow the server by an unpredictable amount
of time. Recursion can be disabled as follows:

• BIND8 and BIND9—Specify recursion no; in the options block.

• BIND8 only—Specify fetch-glue no; in the options block.
Nominum

Configuring the Server 5
The Query Input File

You need to construct a dnsperf input file containing a large and realistic set of queries, on the order of ten
thousand to a million. The input file contains one line per query, consisting of a domain name and an RR
type name separated by a space. The class of the query is implicitly IN.

Nominum provides a sample query file for ease of testing. The latest query file is available for download at
ftp://ftp.nominum.com/pub/nominum/dnsperf/data/.

When measuring the performance serving non-terminal zones such as the root zone or TLDs, note that
such servers spend most of their time providing referral responses, not authoritative answers. Therefore, a
realistic input file might consist mostly of queries for type A for names below, not at, the delegations pres-
ent in the zone. For example, when testing the performance of a server configured to be authoritative for
the top-level domain fi, which contains delegations for domains like
helsinki.fi and turku.fi, the input file could contain lines like

www.turku.fi A
www.helsinki.fi A

where the www prefix ensures that the server will respond with a referral. Ideally, a realistic proportion of
queries for nonexistent domains should be mixed in with those for existing ones, and the lines of the input
file should be in a random order.

Constructing a Dynamic Update Input File

To test dynamic update performance, dnsperf is run with the -u option, and the input file is constructed of
blocks of lines describing dynamic update messages. The first line in a block contains the zone name:

example.com

Subsequent lines contain prerequisites, if any are required. Prerequisites can specify that a name may or
may not exist, an RRset may or may not exist, or an RRset exists and its RDATA matches all specified
rdata for that name and type. The keywords “require” and “prohibit” are followed by the appropriate infor-
mation. All relative names are considered to be relative to the zone name. The following lines show the 5
types of prerequisites:

require a
require a A
require a A 1.2.3.4
prohibit x
prohibit x A

Subsequent lines contain records to be added, records to be deleted, RRsets to be deleted, or names to be
deleted. The keywords “add” or “delete” are followed by the appropriate information. All relative names
are considered to be relative to the zone name. The following lines show the 4 types of updates.
Nominum

6 dnsperf
add x 3600 A 10.1.2.3
delete y A 10.1.2.3
delete z A
delete w

Each update message is terminated by a line containing the send command:

send

Running Tests

To run dnsperf tests, include the “-d” (data file) and “-s” (server) options in the command string, as shown
in the following example:

dnsperf -d input_file -s server

Monitoring the Test

The output of dnsperf is mostly self-explanatory. Pay attention to the number of dropped packets reported;
when running the test over a local Ethernet connection, the number of dropped packets should be zero. If
one or more packets has been dropped, there may be a problem with the network connection. In that case,
the results should be considered suspect and the test repeated.

The following example shows sample output from the dnsperf command:

DNS Performance Testing Tool
Nominum Version 2.0.0.0.d
[Status] Command line: dnsperf -d in -l 10
[Status] Sending queries (to 127.0.0.1)
[Status] Started at: Thu Jan 26 15:18:06 2012
[Status] Stopping after 10.000000 seconds
[Status] Testing complete (time limit)
Statistics:
Queries sent: 370539
Queries completed: 370539 (100.00%)
Queries lost: 0 (0.00%)
Response codes: NXDOMAIN 370539 (100.00%)
Average packet size: request 27, response 71
Run time (s): 10.000463
Queries per second: 37052.184484
Average Latency (s): 0.001693 (min 0.000048, max 0.036055)
Latency StdDev (s): 0.001181

Measuring Latency

The average latency is printed in the statitics output; it takes into account both successes and failures. Note
that requests that received no response at all will not be included in the latency graph—this may unfairly
Nominum

Running Tests 7
skew the average latency in favor of servers that drop requests (or respond with an error later than the dns-
perf timeout) over those from which an error response is received.

TSIG Support

When the “-y” option is used, TSIG records are added to all requests. The command-line option specifies
the key name and secret, where the secret is encoded in base64.

Throttling Support

The “-Q” option limits the numbers of requests per second to a specific number, which is computed
during the entire run of dnsperf.
Nominum

8 dnsperf
Nominum

	dnsperf
	Command Synopsis
	dnsperf Options

	Operational Considerations
	Bandwidth
	Firewalls

	Configuring the Server
	The Query Input File
	Constructing a Dynamic Update Input File

	Running Tests
	Monitoring the Test
	Measuring Latency
	TSIG Support
	Throttling Support

