/* This file is part of GNU bc. Copyright (C) 1991-1994, 1997, 2006, 2008, 2012-2017 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License , or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, see . You may contact the author by: e-mail: philnelson@acm.org us-mail: Philip A. Nelson Computer Science Department, 9062 Western Washington University Bellingham, WA 98226-9062 *************************************************************************/ /* storage.c: Code and data storage manipulations. This includes labels. */ #include "bcdefs.h" #include "proto.h" /* Local prototypes */ static bc_array_node *copy_tree (bc_array_node *ary_node, int depth); static bc_array *copy_array (bc_array *ary); /* Initialize the storage at the beginning of the run. */ void init_storage (void) { /* Functions: we start with none and ask for more. */ f_count = 0; more_functions (); f_names[0] = strdup("(main)"); /* Variables. */ v_count = 0; more_variables (); /* Arrays. */ a_count = 0; more_arrays (); /* Other things... */ ex_stack = NULL; fn_stack = NULL; i_base = 10; o_base = 10; scale = 0; #if defined(READLINE) || defined(LIBEDIT) n_history = -1; #endif c_code = FALSE; bc_init_numbers(); } /* Three functions for increasing the number of functions, variables, or arrays that are needed. This adds another 32 of the requested object. */ void more_functions (void) { int old_count; int indx; bc_function *old_f; bc_function *f; char **old_names; /* Save old information. */ old_count = f_count; old_f = functions; old_names = f_names; /* Add a fixed amount and allocate new space. */ f_count += STORE_INCR; functions = bc_malloc (f_count*sizeof (bc_function)); f_names = bc_malloc (f_count*sizeof (char *)); /* Copy old ones. */ for (indx = 0; indx < old_count; indx++) { functions[indx] = old_f[indx]; f_names[indx] = old_names[indx]; } /* Initialize the new ones. */ for (; indx < f_count; indx++) { f = &functions[indx]; f->f_defined = FALSE; f->f_void = FALSE; f->f_body = bc_malloc (BC_START_SIZE); f->f_body_size = BC_START_SIZE; f->f_code_size = 0; f->f_label = NULL; f->f_autos = NULL; f->f_params = NULL; } /* Free the old elements. */ if (old_count != 0) { free (old_f); free (old_names); } } void more_variables (void) { int indx; int old_count; bc_var **old_var; char **old_names; /* Save the old values. */ old_count = v_count; old_var = variables; old_names = v_names; /* Increment by a fixed amount and allocate. */ v_count += STORE_INCR; variables = bc_malloc (v_count*sizeof(bc_var *)); v_names = bc_malloc (v_count*sizeof(char *)); /* Copy the old variables. */ for (indx = 3; indx < old_count; indx++) { variables[indx] = old_var[indx]; v_names[indx] = old_names[indx]; } /* Initialize the new elements. */ for (; indx < v_count; indx++) variables[indx] = NULL; /* Free the old elements. */ if (old_count != 0) { free (old_var); free (old_names); } } void more_arrays (void) { int indx; int old_count; bc_var_array **old_ary; char **old_names; /* Save the old values. */ old_count = a_count; old_ary = arrays; old_names = a_names; /* Increment by a fixed amount and allocate. */ a_count += STORE_INCR; arrays = bc_malloc (a_count*sizeof(bc_var_array *)); a_names = bc_malloc (a_count*sizeof(char *)); /* Copy the old arrays. */ for (indx = 1; indx < old_count; indx++) { arrays[indx] = old_ary[indx]; a_names[indx] = old_names[indx]; } /* Initialize the new elements. */ for (; indx < a_count; indx++) arrays[indx] = NULL; /* Free the old elements. */ if (old_count != 0) { free (old_ary); free (old_names); } } /* clear_func clears out function FUNC and makes it ready to redefine. */ void clear_func (int func) { bc_function *f; bc_label_group *lg; /* Set the pointer to the function. */ f = &functions[func]; f->f_defined = FALSE; /* XXX restore f_body to initial size??? */ f->f_code_size = 0; if (f->f_autos != NULL) { free_args (f->f_autos); f->f_autos = NULL; } if (f->f_params != NULL) { free_args (f->f_params); f->f_params = NULL; } while (f->f_label != NULL) { lg = f->f_label->l_next; free (f->f_label); f->f_label = lg; } } /* Pop the function execution stack and return the top. */ int fpop(void) { fstack_rec *temp; int retval; if (fn_stack != NULL) { temp = fn_stack; fn_stack = temp->s_next; retval = temp->s_val; free (temp); } else { retval = 0; rt_error ("function stack underflow, contact maintainer."); } return (retval); } /* Push VAL on to the function stack. */ void fpush (int val) { fstack_rec *temp; temp = bc_malloc (sizeof (fstack_rec)); temp->s_next = fn_stack; temp->s_val = val; fn_stack = temp; } /* Pop and discard the top element of the regular execution stack. */ void pop (void) { estack_rec *temp; if (ex_stack != NULL) { temp = ex_stack; ex_stack = temp->s_next; bc_free_num (&temp->s_num); free (temp); } } /* Push a copy of NUM on to the regular execution stack. */ void push_copy (bc_num num) { estack_rec *temp; temp = bc_malloc (sizeof (estack_rec)); temp->s_num = bc_copy_num (num); temp->s_next = ex_stack; ex_stack = temp; } /* Push NUM on to the regular execution stack. Do NOT push a copy. */ void push_num (bc_num num) { estack_rec *temp; temp = bc_malloc (sizeof (estack_rec)); temp->s_num = num; temp->s_next = ex_stack; ex_stack = temp; } /* Make sure the ex_stack has at least DEPTH elements on it. Return TRUE if it has at least DEPTH elements, otherwise return FALSE. */ char check_stack (int depth) { estack_rec *temp; temp = ex_stack; while ((temp != NULL) && (depth > 0)) { temp = temp->s_next; depth--; } if (depth > 0) { rt_error ("Stack error."); return FALSE; } return TRUE; } /* The following routines manipulate simple variables and array variables. */ /* get_var returns a pointer to the variable VAR_NAME. If one does not exist, one is created. */ bc_var * get_var (int var_name) { bc_var *var_ptr; var_ptr = variables[var_name]; if (var_ptr == NULL) { var_ptr = variables[var_name] = bc_malloc (sizeof (bc_var)); bc_init_num (&var_ptr->v_value); } return var_ptr; } /* get_array_num returns the address of the bc_num in the array structure. If more structure is requried to get to the index, this routine does the work to create that structure. VAR_INDEX is a zero based index into the arrays storage array. INDEX is the index into the bc array. */ bc_num * get_array_num (int var_index, unsigned long idx) { bc_var_array *ary_ptr; bc_array *a_var; bc_array_node *temp; int log; unsigned int ix, ix1; int sub [NODE_DEPTH]; /* Get the array entry. */ ary_ptr = arrays[var_index]; if (ary_ptr == NULL) { ary_ptr = arrays[var_index] = bc_malloc (sizeof (bc_var_array)); ary_ptr->a_value = NULL; ary_ptr->a_next = NULL; ary_ptr->a_param = FALSE; } a_var = ary_ptr->a_value; if (a_var == NULL) { a_var = ary_ptr->a_value = bc_malloc (sizeof (bc_array)); a_var->a_tree = NULL; a_var->a_depth = 0; } /* Get the index variable. */ sub[0] = idx & NODE_MASK; ix = idx >> NODE_SHIFT; log = 1; while (ix > 0 || log < a_var->a_depth) { sub[log] = ix & NODE_MASK; ix >>= NODE_SHIFT; log++; } /* Build any tree that is necessary. */ while (log > a_var->a_depth) { temp = bc_malloc (sizeof(bc_array_node)); if (a_var->a_depth != 0) { temp->n_items.n_down[0] = a_var->a_tree; for (ix=1; ix < NODE_SIZE; ix++) temp->n_items.n_down[ix] = NULL; } else { for (ix=0; ix < NODE_SIZE; ix++) temp->n_items.n_num[ix] = bc_copy_num(_zero_); } a_var->a_tree = temp; a_var->a_depth++; } /* Find the indexed variable. */ temp = a_var->a_tree; while ( log-- > 1) { ix1 = sub[log]; if (temp->n_items.n_down[ix1] == NULL) { temp->n_items.n_down[ix1] = bc_malloc (sizeof(bc_array_node)); temp = temp->n_items.n_down[ix1]; if (log > 1) for (ix=0; ix < NODE_SIZE; ix++) temp->n_items.n_down[ix] = NULL; else for (ix=0; ix < NODE_SIZE; ix++) temp->n_items.n_num[ix] = bc_copy_num(_zero_); } else temp = temp->n_items.n_down[ix1]; } /* Return the address of the indexed variable. */ return &(temp->n_items.n_num[sub[0]]); } /* Store the top of the execution stack into VAR_NAME. This includes the special variables ibase, obase, and scale. */ void store_var (int var_name) { bc_var *var_ptr; long temp; char toobig; if (var_name > 3) { /* It is a simple variable. */ var_ptr = get_var (var_name); if (var_ptr != NULL) { bc_free_num(&var_ptr->v_value); var_ptr->v_value = bc_copy_num (ex_stack->s_num); } } else { /* It is a special variable... */ toobig = FALSE; temp = 0; if (bc_is_neg (ex_stack->s_num)) { switch (var_name) { case 0: rt_warn ("negative ibase, set to 2"); temp = 2; break; case 1: rt_warn ("negative obase, set to 2"); temp = 2; break; case 2: rt_warn ("negative scale, set to 0"); temp = 0; break; #if defined(READLINE) || defined(LIBEDIT) case 3: temp = -1; break; #endif } } else { temp = bc_num2long (ex_stack->s_num); if (!bc_is_zero (ex_stack->s_num) && temp == 0) toobig = TRUE; } switch (var_name) { case 0: if (temp < 2 && !toobig) { i_base = 2; rt_warn ("ibase too small, set to 2"); } else if (temp > 16 || toobig) { if (std_only) { i_base = 16; rt_warn ("ibase too large, set to 16"); } else if (temp > 36 || toobig) { i_base = 36; rt_warn ("ibase too large, set to 36"); } else { if (temp >= 16 && warn_not_std) rt_warn ("ibase larger than 16 is non-standard"); i_base = temp; } } else i_base = (int) temp; break; case 1: if (temp < 2 && !toobig) { o_base = 2; rt_warn ("obase too small, set to 2"); } else if (temp > BC_BASE_MAX || toobig) { o_base = BC_BASE_MAX; rt_warn ("obase too large, set to %d", BC_BASE_MAX); } else o_base = (int) temp; break; case 2: /* WARNING: The following if statement may generate a compiler warning if INT_MAX == LONG_MAX. This is NOT a problem. */ if (temp > BC_SCALE_MAX || toobig ) { scale = BC_SCALE_MAX; rt_warn ("scale too large, set to %d", BC_SCALE_MAX); } else scale = (int) temp; break; #if defined(READLINE) || defined(LIBEDIT) case 3: if (toobig) { temp = -1; rt_warn ("history too large, set to unlimited"); UNLIMIT_HISTORY; } else { n_history = temp; if (temp < 0) UNLIMIT_HISTORY; else HISTORY_SIZE(n_history); } #endif } } } /* Store the top of the execution stack into array VAR_NAME. VAR_NAME is the name of an array, and the next to the top of stack for the index into the array. */ void store_array (int var_name) { bc_num *num_ptr; long idx; if (!check_stack(2)) return; idx = bc_num2long (ex_stack->s_next->s_num); if (idx < 0 || idx > BC_DIM_MAX || (idx == 0 && !bc_is_zero(ex_stack->s_next->s_num))) rt_error ("Array %s subscript out of bounds.", a_names[var_name]); else { num_ptr = get_array_num (var_name, idx); if (num_ptr != NULL) { bc_free_num (num_ptr); *num_ptr = bc_copy_num (ex_stack->s_num); bc_free_num (&ex_stack->s_next->s_num); ex_stack->s_next->s_num = ex_stack->s_num; bc_init_num (&ex_stack->s_num); pop(); } } } /* Load a copy of VAR_NAME on to the execution stack. This includes the special variables ibase, obase and scale. */ void load_var (int var_name) { bc_var *var_ptr; switch (var_name) { case 0: /* Special variable ibase. */ push_copy (_zero_); bc_int2num (&ex_stack->s_num, i_base); break; case 1: /* Special variable obase. */ push_copy (_zero_); bc_int2num (&ex_stack->s_num, o_base); break; case 2: /* Special variable scale. */ push_copy (_zero_); bc_int2num (&ex_stack->s_num, scale); break; #if defined(READLINE) || defined(LIBEDIT) case 3: /* Special variable history. */ push_copy (_zero_); bc_int2num (&ex_stack->s_num, n_history); break; #endif default: /* It is a simple variable. */ var_ptr = variables[var_name]; if (var_ptr != NULL) push_copy (var_ptr->v_value); else push_copy (_zero_); } } /* Load a copy of VAR_NAME on to the execution stack. This includes the special variables ibase, obase and scale. */ void load_array (int var_name) { bc_num *num_ptr; long idx; if (!check_stack(1)) return; idx = bc_num2long (ex_stack->s_num); if (idx < 0 || idx > BC_DIM_MAX || (idx == 0 && !bc_is_zero(ex_stack->s_num))) rt_error ("Array %s subscript out of bounds.", a_names[var_name]); else { num_ptr = get_array_num (var_name, idx); if (num_ptr != NULL) { pop(); push_copy (*num_ptr); } } } /* Decrement VAR_NAME by one. This includes the special variables ibase, obase, and scale. */ void decr_var (int var_name) { bc_var *var_ptr; switch (var_name) { case 0: /* ibase */ if (i_base > 2) i_base--; else rt_warn ("ibase too small in --"); break; case 1: /* obase */ if (o_base > 2) o_base--; else rt_warn ("obase too small in --"); break; case 2: /* scale */ if (scale > 0) scale--; else rt_warn ("scale can not be negative in -- "); break; #if defined(READLINE) || defined(LIBEDIT) case 3: /* history */ n_history--; if (n_history >= 0) HISTORY_SIZE(n_history); else { n_history = -1; rt_warn ("history is negative, set to unlimited"); UNLIMIT_HISTORY; } break; #endif default: /* It is a simple variable. */ var_ptr = get_var (var_name); if (var_ptr != NULL) bc_sub (var_ptr->v_value,_one_,&var_ptr->v_value, 0); } } /* Decrement VAR_NAME by one. VAR_NAME is an array, and the top of the execution stack is the index and it is popped off the stack. */ void decr_array (int var_name) { bc_num *num_ptr; long idx; /* It is an array variable. */ if (!check_stack (1)) return; idx = bc_num2long (ex_stack->s_num); if (idx < 0 || idx > BC_DIM_MAX || (idx == 0 && !bc_is_zero (ex_stack->s_num))) rt_error ("Array %s subscript out of bounds.", a_names[var_name]); else { num_ptr = get_array_num (var_name, idx); if (num_ptr != NULL) { pop (); bc_sub (*num_ptr, _one_, num_ptr, 0); } } } /* Increment VAR_NAME by one. This includes the special variables ibase, obase, and scale. */ void incr_var (int var_name) { bc_var *var_ptr; switch (var_name) { case 0: /* ibase */ if (i_base < 16) i_base++; else rt_warn ("ibase too big in ++"); break; case 1: /* obase */ if (o_base < BC_BASE_MAX) o_base++; else rt_warn ("obase too big in ++"); break; case 2: if (scale < BC_SCALE_MAX) scale++; else rt_warn ("Scale too big in ++"); break; #if defined(READLINE) || defined(LIBEDIT) case 3: /* history */ n_history++; if (n_history > 0) HISTORY_SIZE(n_history); else { n_history = -1; rt_warn ("history set to unlimited"); UNLIMIT_HISTORY; } break; #endif default: /* It is a simple variable. */ var_ptr = get_var (var_name); if (var_ptr != NULL) bc_add (var_ptr->v_value, _one_, &var_ptr->v_value, 0); } } /* Increment VAR_NAME by one. VAR_NAME is an array and top of execution stack is the index and is popped off the stack. */ void incr_array (int var_name) { bc_num *num_ptr; long idx; if (!check_stack (1)) return; idx = bc_num2long (ex_stack->s_num); if (idx < 0 || idx > BC_DIM_MAX || (idx == 0 && !bc_is_zero (ex_stack->s_num))) rt_error ("Array %s subscript out of bounds.", a_names[var_name]); else { num_ptr = get_array_num (var_name, idx); if (num_ptr != NULL) { pop (); bc_add (*num_ptr, _one_, num_ptr, 0); } } } /* Routines for processing autos variables and parameters. */ /* NAME is an auto variable that needs to be pushed on its stack. */ void auto_var (int name) { bc_var *v_temp; bc_var_array *a_temp; int ix; if (name > 0) { /* A simple variable. */ ix = name; v_temp = bc_malloc (sizeof (bc_var)); v_temp->v_next = variables[ix]; bc_init_num (&v_temp->v_value); variables[ix] = v_temp; } else { /* An array variable. */ ix = -name; a_temp = bc_malloc (sizeof (bc_var_array)); a_temp->a_next = arrays[ix]; a_temp->a_value = NULL; a_temp->a_param = FALSE; arrays[ix] = a_temp; } } /* Free_a_tree frees everything associated with an array variable tree. This is used when popping an array variable off its auto stack. */ void free_a_tree (bc_array_node *root, int depth) { int ix; if (root != NULL) { if (depth > 1) for (ix = 0; ix < NODE_SIZE; ix++) free_a_tree (root->n_items.n_down[ix], depth-1); else for (ix = 0; ix < NODE_SIZE; ix++) bc_free_num ( &(root->n_items.n_num[ix])); free (root); } } /* LIST is an NULL terminated list of varible names that need to be popped off their auto stacks. */ void pop_vars (arg_list *list) { bc_var *v_temp; bc_var_array *a_temp; int ix; while (list != NULL) { ix = list->av_name; if (ix > 0) { /* A simple variable. */ v_temp = variables[ix]; if (v_temp != NULL) { variables[ix] = v_temp->v_next; bc_free_num (&v_temp->v_value); free (v_temp); } } else { /* An array variable. */ ix = -ix; a_temp = arrays[ix]; if (a_temp != NULL) { arrays[ix] = a_temp->a_next; if (!a_temp->a_param && a_temp->a_value != NULL) { free_a_tree (a_temp->a_value->a_tree, a_temp->a_value->a_depth); free (a_temp->a_value); } free (a_temp); } } list = list->next; } } /* COPY_NODE: Copies an array node for a call by value parameter. */ static bc_array_node * copy_tree (bc_array_node *ary_node, int depth) { bc_array_node *res = bc_malloc (sizeof(bc_array_node)); int i; if (depth > 1) for (i=0; in_items.n_down[i] != NULL) res->n_items.n_down[i] = copy_tree (ary_node->n_items.n_down[i], depth - 1); else res->n_items.n_down[i] = NULL; else for (i=0; in_items.n_num[i] != NULL) res->n_items.n_num[i] = bc_copy_num (ary_node->n_items.n_num[i]); else res->n_items.n_num[i] = NULL; return res; } /* COPY_ARRAY: Copies an array for a call by value array parameter. ARY is the pointer to the bc_array structure. */ static bc_array * copy_array (bc_array *ary) { bc_array *res = bc_malloc (sizeof(bc_array)); res->a_depth = ary->a_depth; res->a_tree = copy_tree (ary->a_tree, ary->a_depth); return (res); } /* A call is being made to FUNC. The call types are at PC. Process the parameters by doing an auto on the parameter variable and then store the value at the new variable or put a pointer the the array variable. */ void process_params (program_counter *progctr, int func) { char ch; arg_list *params; int ix, ix1; bc_var *v_temp; bc_var_array *a_src, *a_dest; /* Get the parameter names from the function. */ params = functions[func].f_params; while ((ch = byte(progctr)) != ':') { if (params != NULL) { if ((ch == '0') && params->av_name > 0) { /* A simple variable. */ ix = params->av_name; v_temp = bc_malloc (sizeof(bc_var)); v_temp->v_next = variables[ix]; v_temp->v_value = ex_stack->s_num; bc_init_num (&ex_stack->s_num); variables[ix] = v_temp; } else if ((ch == '1') && (params->av_name < 0)) { /* The variables is an array variable. */ /* Compute source index and make sure some structure exists. */ ix = (int) bc_num2long (ex_stack->s_num); (void) get_array_num (ix, 0); /* Push a new array and Compute Destination index */ auto_var (params->av_name); ix1 = -params->av_name; /* Set up the correct pointers in the structure. */ if (ix == ix1) a_src = arrays[ix]->a_next; else a_src = arrays[ix]; a_dest = arrays[ix1]; if (params->arg_is_var) { a_dest->a_param = TRUE; a_dest->a_value = a_src->a_value; } else { a_dest->a_param = FALSE; a_dest->a_value = copy_array (a_src->a_value); } } else { if (params->av_name < 0) rt_error ("Parameter type mismatch parameter %s.", a_names[-params->av_name]); else rt_error ("Parameter type mismatch, parameter %s.", v_names[params->av_name]); params++; } pop (); } else { rt_error ("Parameter number mismatch"); return; } params = params->next; } if (params != NULL) rt_error ("Parameter number mismatch"); }