
Bash, the Bourne!Again Shell

Chet Ramey
Case Western Reserve University

chet@po.cwru.edu

ABSTRACT

An overview of /bin/sh!compatible shells is presented, as well as an introduction to
the POSIX.2 shell and tools standard. These serve as an introduction to bash. A compar-
ison of bash to sh and ksh is presented, as well as a discussion of features unique to bash.
Finally, some of the changes and new features to appear in the next bash release will be
discussed.

1. Introduction
Bash is the shell, or command language interpreter, that will appear in the GNU operating system.

The name is an acronym for the ‘‘Bourne!Again SHell’’, a pun on Steve Bourne, the author of the direct
ancestor of the current UNIX† shell /bin/sh, which appeared in the Seventh Edition Bell Labs Research ver-
sion of UNIX[1].

Bash is an sh!compatible shell that incorporates useful features from the Korn shell (ksh)[2] and the
C shell (csh)[3], described later in this article. It is ultimately intended to be a conformant implementation
of the IEEE POSIX Shell and Tools specication (IEEE Working Group 1003.2). It offers functional
improvements over sh for both interactive and programming use.

While the GNU operating system will most likely include a version of the Berkeley shell csh, bash
will be the default shell. Like other GNU software, bash is quite portable. It currently runs on nearly every
version of UNIX and a few other operating systems ! an independently-supported port exists for OS/2, and
there are rumors of ports to DOS and Windows NT. Ports to UNIX-like systems such as QNX and Minix
are part of the distribution.

The original author of bash was Brian Fox, an employee of the Free Software Foundation. The cur-
rent developer and maintainer is Chet Ramey, a volunteer who works at Case Western Reserve University.

2. What is a shell?
At its base, a shell is simply a macro processor that executes commands. A UNIX shell is both a

command interpreter, which provides the user interface to the rich set of UNIX utilities, and a programming
language, allowing these utilitites to be combined. The shell reads commands either from a terminal or a
le. Files containing commands can be created, and become commands themselves. These new commands
have the same status as system commands in directories like /bin, allowing users or groups to establish cus-
tom environments.

2.1. Command Interpreter
A shell allows execution of UNIX commands, both synchronously and asynchronously. The redirec-

tion constructs permit ne-grained control of the input and output of those commands, and the shell allows
control over the contents of their environment. UNIX shells also provide a small set of built-in commands
(builtins) implementing functionality impossible (e.g., cd, break, continue, and exec) or inconvenient

† UNIX is a trademark of X/OPEN

- 2 -

(history, getopts, kill, or pwd, for example) to obtain via separate utilities. Shells may be used interac-
tively or non-interactively: they accept input typed from the keyboard or from a le.

2.2. Programming Language
While executing commands is essential, most of the power (and complexity) of shells is due to their

embedded programming languages. Like any high-level language, the shell provides variables, ow control
constructs, quoting, and functions.

The basic syntactic element is a simple command. A simple command consists of an optional set of
variable assignments, a command word, and an optional list of arguments. Operators to redirect input and
output may appear anywhere in a simple command. Some examples are:

who
trn -e -S1 -N
ls -l /bin > binfiles
make > make.out 2>make.errs

A pipeline is a sequence of two or more commands separated by the character !. The standard output
of the rst command is connected to the standard input of the second. Examples of pipelines include:

who | wc -l
ls -l | sort +3nr

Simple commands and pipelines may be combined into lists. A list is a sequence of pipelines sepa-
rated by one of ;, &, &&, or !!, and optionally terminated by ;, &, or a newline. Commands separated by
; are executed sequentially; the shell waits for each to complete in turn. If a command is terminated by &,
the shell executes it in the background , and does not wait for it to nish. If two commands are separated by
&&, the second command executes only if the rst command succeeds. A separator of !! causes the sec-
ond command to execute only if the rst fails. Some examples are:

who ; date
cd /usr/src || exit 1
cd "$@" && xtitle $HOST: $PWD

The shell programming language provides a variety of ow control structures. The for command
allows a list of commands to be executed once for each word in a word list. The case command allows a
list to be executed if a word matches a specied pattern. The while and until commands execute a list of
commands as long as a guard command completes successfully or fails, respectively. The if command
allows execution of different command lists depending on the exit status of a guard command.

A shell function associates a list of commands with a name. Each time the name is used as a simple
command, the list is executed. This execution takes place in the current shell context; no new process is
created. Functions may have their own argument lists and local variables, and may be recursive.

The shell language provides variables, which may be both set and referenced. A number of special
parameters are present, such as $@, which returns the shell’s positional parameters (command-line argu-
ments), $?, the exit status of the previous command, and $$, the shell’s process I.D. In addition to provid-
ing special parameters and user-dened variables, the shell permits the values of certain variables to control
its behavior. Some of these variables include IFS, which controls how the shell splits words, PATH, which
tells the shell where to look for commands, and PS1, whose value is the string the shell uses to prompt for
commands. There are a few variables whose values are set by the shell and normally only referenced by
users; PWD, whose value is the pathname of the shell’s current working directory, is one such variable.
Variables can be used in nearly any shell context and are particularly valuable when used with control struc-
tures.

There are several shell expansions. A variable name is expanded to its value using ${name}, where
the braces are optional. There are a number of parameter expansions available. For example, there are
${name:!word}, which expands to word if name is unset or null, and the inverse ${name:+word}, which
expands to word if name is set and not null. Command substitution allows the output of a command to
replace the command name. The syntax is ‘command‘. Command is executed and it and the backquotes
are replaced by its output, with trailing newlines removed. Pathname expansion is a way to expand a word
to a set of lenames. Words are regarded as patterns, in which the characters *, ?, and [have special

- 3 -

meaning. Words containing these special characters are replaced with a sorted list of matching pathnames.
If a word generates no matches, it is left unchanged.

Quoting is used to remove the special meaning of characters or words. It can disable special treat-
ment for shell operators or other special characters, prevent reserved words from being recognized as such,
and inhibit variable expansion. The shell has three quoting mechanisms: a backslash preserves the literal
value of the next character, a pair of single quotes preserves the literal value of each character between the
quotes, and a pair of double quotes preserves the literal meaning of enclosed characters while allowing
some expansions.

Some of the commands built into the shell are part of the programming language. The break and
continue commands control loop execution as in the C language. The ev al builtin allows a string to be
parsed and executed as a command. Wait tells the shell to pause until the processes specied as arguments
have exited.

2.3. Interactive Features
Shells have begun offering features geared specically for interactive use rather than to augment the

programming language. These interactive features include job control, command line editing, history and
aliases.

Job control is a facility provided jointly by the shell and the UNIX kernel that allows users to selec-
tively stop (suspend) and restart (resume) processes. Each pipeline executed by the shell is referred to as a
job. Jobs may be suspended and restarted in either the foreground, where they hav e access to the terminal,
or background, where they are isolated and cannot read from the terminal. Typing the suspend character
while a process is running stops that process and returns control to the shell. Once a job is suspended, the
user manipulates the job’s state, using bg to continue it in the background, fg to return it to the foreground
and await its completion, or kill to send it a signal. The jobs command lists the status of jobs, and wait
will pause the shell until a specied job terminates. The shell provides a number of ways to refer to a job,
and will notify the user whenever a background job terminates.

With the advent of more powerful terminals and terminal emulators, more sophisticated interaction
than that provided by the UNIX kernel terminal driver is possible. Some shells offer command line editing,
which permits a user to edit lines of input using familiar emacs or vi-style commands before submitting
them to the shell. Editors allow corrections to be made without having to erase back to the point of error, or
start the line anew. Command line editors run the gamut from a small xed set of commands and key bind-
ings to input facilities which allow arbitrary actions to be bound to a key or key sequence.

Modern shells also keep a history, which is the list of commands a user has typed. Shell facilities are
available to recall previous commands and use portions of old commands when composing new ones. The
command history can be saved to a le and read back in at shell startup, so it persists across sessions.
Shells which provide both command editing and history generally have editing commands to interactively
step forward and backward through the history list.

Aliases allow a string to be substituted for a command name. They can be used to create a mnemonic
for a UNIX command name (alias del=rm), to expand a single word to a complex command (alias
news=’xterm -g 80x45 -title trn -e trn -e -S1 -N &’), or to ensure that a command
is invoked with a basic set of options (alias ls="/bin/ls -F").

3. The POSIX Shell Standard
POSIX is a name originally coined by Richard Stallman for a family of open system standards based

on UNIX. There are a number of aspects of UNIX under consideration for standardization, from the basic
system services at the system call and C library level to applications and tools to system administration and
management. Each area of standardization is assigned to a working group in the 1003 series.

The POSIX Shell and Tools standard has been developed by IEEE Working Group 1003.2
(POSIX.2) [4]. It concentrates on the command interpreter interface and utility programs commonly
executed from the command line or by other programs. An initial version of the standard has been
approved and published by the IEEE, and work is currently underway to update it. There are four primary
areas of work in the 1003.2 standard:

- 4 -

• Aspects of the shell’s syntax and command language. A number of special builtins such as cd and
exec are being specied as part of the shell, since their functionality usually cannot be implemented
by a separate executable;

• A set of utilities to be called by shell scripts and applications. Examples are programs like sed, tr,
and awk. Utilities commonly implemented as shell builtins are described in this section, such as test
and kill. An expansion of this section’s scope, termed the User Portability Extension, or UPE, has
standardized interactive programs such as vi and mailx;

• A group of functional interfaces to services provided by the shell, such as the traditional system C
library function. There are functions to perform shell word expansions, perform lename expansion
(globbing), obtain values of POSIX.2 system conguration variables, retrieve values of environment
variables (getenv()), and other services;

• A suite of ‘‘development’’ utilities such as c89 (the POSIX.2 version of cc), and yacc.
Bash is concerned with the aspects of the shell’s behavior dened by POSIX.2. The shell command

language has of course been standardized, including the basic ow control and program execution con-
structs, I/O redirection and pipelining, argument handling, variable expansion, and quoting. The special
builtins, which must be implemented as part of the shell to provide the desired functionality, are specied
as being part of the shell; examples of these are ev al and export. Other utilities appear in the sections of
POSIX.2 not devoted to the shell which are commonly (and in some cases must be) implemented as builtin
commands, such as read and test.

POSIX.2 also species aspects of the shell’s interactive behavior as part of the UPE, including job
control, command line editing, and history. Interestingly enough, only vi-style line editing commands have
been standardized; emacs editing commands were left out due to objections.

There were certain areas in which POSIX.2 felt standardization was necessary, but no existing imple-
mentation provided the proper behavior. The working group invented and standardized functionality in
these areas. The command builtin was invented so that shell functions could be written to replace builtins;
it makes the capabilities of the builtin available to the function. The reserved word ‘‘!’’ was added to
negate the return value of a command or pipeline; it was nearly impossible to express ‘‘if not x’’ cleanly
using the sh language. There exist multiple incompatible implementations of the test builtin, which tests
les for type and other attributes and performs arithmetic and string comparisons. POSIX considered none
of these correct, so the standard behavior was specied in terms of the number of arguments to the com-
mand. POSIX.2 dictates exactly what will happen when four or fewer arguments are given to test, and
leaves the behavior undened when more arguments are supplied. Bash uses the POSIX.2 algorithm,
which was conceived by David Korn.

While POSIX.2 includes much of what the shell has traditionally provided, some important things
have been omitted as being ‘‘beyond its scope.’’ There is, for instance, no mention of a difference between
a login shell and any other interactive shell (since POSIX.2 does not specify a login program). No xed
startup les are dened, either ! the standard does not mention .profile .

4. Shell Comparison
This section compares features of bash, sh, and ksh (the three shells closest to POSIX compliance).

Since ksh and bash are supersets of sh, the features common to all three are covered rst. Some of the fea-
tures bash and ksh contain which are not in sh will be discussed. Next, features unique to bash will be
listed. The rst three sections provide a progressively more detailed overview of bash. Finally, features of
ksh-88 (the currently-available version) not in sh or bash will be presented.

4.1. Common Features
All three shells have the same basic feature set, which is essentially that provided by sh and described

in any sh manual page. Bash and ksh are both sh supersets, and so all three provide the command inter-
preter and programming language described earlier. The shell grammar, syntax, ow control, redirections,
and builtins implemented by the Bourne shell are the baseline for subsequent discussion.

- 5 -

4.2. Features in bash and ksh
Ksh and bash have sev eral features in common beyond this base level of functionality. Some of this

is due to the POSIX.2 standard. Other functions have been implemented in bash using ksh as a guide.

4.2.1. Variables and Variable Expansion
Bash and ksh have augmented variable expansion. Arithmetic substitution allows an expression to be

evaluated and the result substituted. Shell variables may be used as operands, and the result of an expres-
sion may be assigned to a variable. Nearly all of the operators from the C language are available, with the
same precedence rules:

$ echo $((3 + 5 * 32))
163

Variables may be declared as integer , which causes arithmetic evaluation to be performed on the value
whenever they are assigned to.

There are new expansions to obtain the length of a variable’s value and to remove substrings match-
ing specied patterns from the beginning and end of variable values. A new form of command substitution,
$(list), is much easier to nest than ‘list‘ and has simplied quoting rules.

There are new variables to control the shell’s behavior, and additional variables set or interpreted spe-
cially by the shell. RANDOM and SECONDS are dynamic variables: their values are generated afresh
each time they are referenced. RANDOM returns a different random number each time it is referenced,
and SECONDS returns the number of seconds since the shell was started or the variable was assigned to,
plus any value assigned. PWD and OLDPWD are set to the current and previous working directories,
respectively. TMOUT controls how long the shell will wait at a prompt for input. If TMOUT is set to a
value greater than zero, the shell exits after waiting that many seconds for input. REPLY is the default
variable for the read builtin; if no variable names are supplied as arguments, the line read is assigned to
REPLY.

4.2.2. New and Modied Builtins
Both shells expand the basic sh set of builtin commands. Let provides a way to perform arithmetic

on shell variables. Shell programmers use typeset (bash includes declare as a synonym) to assign
attributes such as export and readonly to variables. Getopts is used by shell scripts to parse script options
and arguments. The set command has a new option !o which takes option names as arguments. Option
names are synonyms for the other set options (e.g., !f and !o noglob) or provide new functionality (-o
notify, for example). The read builtin takes a new !r option to specify that a line ending in a backslash
should not be continued.

4.2.3. Tilde Expansion
Tilde expansion is a feature adopted from the C shell. A tilde character at the beginning of a word is

expanded to either $HOME or the home directory of another user, depending on what follows the tilde.

4.2.4. Interactive Improvements
The most noticable improvements over sh are geared for interactive use. Ksh and bash provide job

control in a very similar fashion, with the same options to enable and disable it (set -o monitor) and the
same builtin commands to manipulate jobs (jobs/fg/bg/kill/wait).

Command line editing, with emacs and vi-style key bindings, is available in both shells. The Bash
readline library is considerably more sophisticated than the ksh editing library: it allows arbitrary key
bindings, macros, a per-user customization le (˜/.inputrc), a number of variables to further customize
behavior, and a much larger set of bindable editing commands. The ksh editing library provides a small
xed command set and only clumsy macros.

Both shells offer access to the command history. The in-line editing options have default key bind-
ings to access the history list. The fc command is provided to re-execute previous commands and display

- 6 -

the contents of the history list.

4.2.5. Miscellaneous Changes and Improvments
Other improvements include aliases, the select shell language construct, which supports the genera-

tion and presentation of simple menus, and extensions to the export and readonly builtins which allow
variables to be assigned values at the same time the attributes are set. Word splitting has changed: if two or
more adjacent word splitting characters occur, bash and ksh will generate null elds; sh makes runs of mul-
tiple eld separator charactors the same as a single separator. Bash and ksh split only the results of expan-
sion, rather than every word as sh does, closing a long-standing shell security hole.

Shell functions in bash and ksh may have local variables. Variables declared with typeset (or the
bash synonym, local), have a scope restricted to the function and its descendents, and may shadow variables
dened by the invoking shell. Local variables are removed when a function completes.

4.3. Features Unique to bash
Naturally, bash includes features not in sh or ksh. This section discusses some of the features which

make bash unique. Most of them provide improved interactive use, but a few programming improvements
are present as well. Full descriptions of these features can be found in the bash documentation.

4.3.1. Startup Files
Bash executes startup les differently than other shells. The bash behavior is a compromise between

the csh principle of startup les with xed names executed for each shell and the sh ‘‘minimalist’’ behavior.
An interactive instance of bash started as a login shell reads and executes ˜/.bash_profile (the le
.bash_profile in the user’s home directory), if it exists. An interactive non-login shell reads and executes
˜/.bashrc . A non-interactive shell (one begun to execute a shell script, for example) reads no xed startup
le, but uses the value of the variable ENV, if set, as the name of a startup le. The ksh practice of reading
$ENV for every shell, with the accompanying difculty of dening the proper variables and functions for
interactive and non-interactive shells or having the le read only for interactive shells, was considered too
complex.

4.3.2. New Builtin Commands
There are a few builtins which are new or hav e been extended in bash. The enable builtin allows

builtin commands to be turned on and off arbitrarily. To use the version of echo found in a user’s search
path rather than the bash builtin, enable -n echo sufces. The help builtin provides quick synopses of
the shell facilities without requiring access to a manual page. Builtin is similar to command in that it
bypasses shell functions and directly executes builtin commands. Access to a csh-style stack of directories
is provided via the pushd, popd, and dirs builtins. Pushd and popd insert and remove directories from the
stack, respectively, and dirs lists the stack contents.The suspend command will stop the shell process when
job control is active; most other shells do not allow themselves to be stopped like that. Type, the bash
answer to which and whence, shows what will happen when a word is typed as a command:

$ type export
export is a shell builtin
$ type -t export
builtin
$ type bash
bash is /bin/bash
$ type cd
cd is a function
cd ()
{

builtin cd "$@" && xtitle $HOST: $PWD
}

- 7 -

Various modes tell what a command word is (reserved word, alias, function, builtin, or le) or which ver-
sion of a command will be executed based on a user’s search path. Some of this functionality has been
adopted by POSIX.2 and folded into the command utility.

4.3.3. Editing and Completion
One area in which bash shines is command line editing. Bash uses the readline library to read and

edit lines when interactive. Readline is a powerful and exible input facility that a user can congure to his
tastes. It allows lines to be edited using either emacs or vi commands, where those commands are appropri-
ate. The full capability of emacs is not present ! there is no way to execute a named command with M-x,
for instance ! but the existing commands are more than adequate. The vi mode is compliant with the com-
mand line editing standardized by POSIX.2.

Readline is fully customizable. In addition to the basic commands and key bindings, the library
allows users to dene additional key bindings using a startup le. The inputrc le, which defaults to the
le ˜/.inputrc , is read each time readline initializes, permitting users to maintain a consistent interface
across a set of programs. Readline includes an extensible interface, so each program using the library can
add its own bindable commands and program-specic key bindings. Bash uses this facility to add bindings
that perform history expansion or shell word expansions on the current input line.

Readline interprets a number of variables which further tune its behavior. Variables exist to control
whether or not eight-bit characters are directly read as input or converted to meta-prexed key sequences (a
meta-prexed key sequence consists of the character with the eighth bit zeroed, preceded by the meta-
prefix character, usually escape, which selects an alternate keymap), to decide whether to output characters
with the eighth bit set directly or as a meta-prexed key sequence, whether or not to wrap to a new screen
line when a line being edited is longer than the screen width, the keymap to which subsequent key bindings
should apply, or even what happens when readline wants to ring the terminal’s bell. All of these variables
can be set in the inputrc le.

The startup le understands a set of C preprocessor-like conditional constructs which allow variables
or key bindings to be assigned based on the application using readline, the terminal currently being used, or
the editing mode. Users can add program-specic bindings to make their lives easier: here are bindings to
edit the value of PATH and double-quote the current or previous word:

Macros that are convenient for shell interaction
$if Bash
edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
prepare to type a quoted word -- insert open and close double quotes
and move to just after the open quote
"\C-x\"": "\"\"\C-b"
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

There is a readline command to re-read the le, so users can edit the le, change some bindings, and begin
to use them almost immediately.

Bash implements the bind builtin for more dyamic control of readline than the startup le permits.
Bind is used in several ways. In list mode, it can display the current key bindings, list all the readline edit-
ing directives available for binding, list which keys inv oke a giv en directive, or output the current set of key
bindings in a format that can be incorporated directly into an inputrc le. In batch mode, it reads a series
of key bindings directly from a le and passes them to readline. In its most common usage, bind takes a
single string and passes it directly to readline, which interprets the line as if it had just been read from the
inputrc le. Both key bindings and variable assignments can appear in the string given to bind.

The readline library also provides an interface for word completion. When the completion character
(usually TAB) is typed, readline looks at the word currently being entered and computes the set of le-
names of which the current word is a valid prex. If there is only one possible completion, the rest of the

- 8 -

characters are inserted directly, otherwise the common prex of the set of lenames is added to the current
word. A second TAB character entered immediately after a non-unique completion causes readline to list
the possible completions; there is an option to have the list displayed immediately. Readline provides
hooks so that applications can provide specic types of completion before the default lename completion
is attempted. This is quite exible, though it is not completely user-programmable. Bash, for example, can
complete lenames, command names (including aliases, builtins, shell reserved words, shell functions, and
executables found in the le system), shell variables, usernames, and hostnames. It uses a set of heuristics
that, while not perfect, is generally quite good at determining what type of completion to attempt.

4.3.4. History
Access to the list of commands previously entered (the command history) is provided jointly by bash

and the readline library. Bash provides variables (HISTFILE, HISTSIZE, and HISTCONTROL) and the
history and fc builtins to manipulate the history list. The value of HISTFILE specifes the le where bash
writes the command history on exit and reads it on startup. HISTSIZE is used to limit the number of com-
mands saved in the history. HISTCONTROL provides a crude form of control over which commands are
saved on the history list: a value of ignorespace means to not save commands which begin with a space; a
value of ignoredups means to not save commands identical to the last command saved. HISTCONTROL
was named history_control in earlier versions of bash; the old name is still accepted for backwards com-
patibility. The history command can read or write les containing the history list and display the current
list contents. The fc builtin, adopted from POSIX.2 and the Korn Shell, allows display and re-execution,
with optional editing, of commands from the history list. The readline library offers a set of commands to
search the history list for a portion of the current input line or a string typed by the user. Finally, the his-
tory library, generally incorporated directly into the readline library, implements a facility for history recall,
expansion, and re-execution of previous commands very similar to csh (‘‘bang history’’, so called because
the exclamation point introduces a history substitution):

$ echo a b c d e
a b c d e
$!! f g h i
echo a b c d e f g h i
a b c d e f g h i
$!-2
echo a b c d e
a b c d e
$ echo !-2:1-4
echo a b c d
a b c d

The command history is only saved when the shell is interactive, so it is not available for use by shell
scripts.

4.3.5. New Shell Variables
There are a number of convenience variables that bash interprets to make life easier. These include

FIGNORE, which is a set of lename sufxes identifying les to exclude when completing lenames;
HOSTTYPE, which is automatically set to a string describing the type of hardware on which bash is cur-
rently executing; OSTYPE, to which bash assigns a value that identies the version of UNIX it’s running
on (great for putting architecture-specic binary directories into the PATH); and IGNOREEOF, whose
value indicates the number of consecutive EOF characters that an interactive shell will read before exiting !
an easy way to keep yourself from being logged out accidentally. The auto_resume variable alters the way
the shell treats simple command names: if job control is active, and this variable is set, single-word simple
commands without redirections cause the shell to rst look for a suspended job with that name before start-
ing a new process.

- 9 -

4.3.6. Brace Expansion
Since sh offers no convenient way to generate arbitrary strings that share a common prex or sufx

(pathname expansion requires that the lenames exist), bash implements brace expansion, a capability
picked up from csh. Brace expansion is similar to pathname expansion, but the strings generated need not
correspond to existing les. A brace expression consists of an optional preamble , followed by a pair of
braces enclosing a series of comma-separated strings, and an optional postamble . The preamble is
prepended to each string within the braces, and the postamble is then appended to each resulting string:

$ echo a{d,c,b}e
ade ace abe

4.3.7. Prompt Customization
One of the more popular interactive features that bash provides is the ability to customize the prompt.

Both PS1 and PS2, the primary and secondary prompts, are expanded before being displayed. Parameter
and variable expansion is performed when the prompt string is expanded, so the value of any shell variable
can be put into the prompt (e.g., $SHLVL, which indicates how deeply the current shell is nested). Bash
specially interprets characters in the prompt string preceded by a backslash. Some of these backslash
escapes are replaced with the current time, the date, the current working directory, the username, and the
command number or history number of the command being entered. There is even a backslash escape to
cause the shell to change its prompt when running as root after an su. Before printing each primary prompt,
bash expands the variable PROMPT_COMMAND and, if it has a value, executes the expanded value as a
command, allowing additional prompt customization. For example, this assignment causes the current user,
the current host, the time, the last component of the current working directory, the level of shell nesting,
and the history number of the current command to be embedded into the primary prompt:

$ PS1=’\u@\h [\t] \W($SHLVL:\!)\$ ’
chet@odin [21:03:44] documentation(2:636)$ cd ..
chet@odin [21:03:54] src(2:637)$

The string being assigned is surrounded by single quotes so that if it is exported, SHLVL will be updated
by a child shell:

chet@odin [21:13:35] src(2:638)$ export PS1
chet@odin [21:17:40] src(2:639)$ bash
chet@odin [21:17:46] src(3:696)$

The \$ escape is displayed as ‘‘$’’ when running as a normal user, but as ‘‘#’’ when running as root.

4.3.8. POSIX Mode
Although bash is intended to be POSIX.2 compliant, there are areas in which the default behavior is

not compatible with the standard. For users who wish to operate in a strict POSIX.2 environment, bash
implements a POSIX mode. When this mode is active, bash modies its default operation where it differs
from POSIX.2 to match the standard. POSIX mode is entered when bash is started with the -o posix option
or when set -o posix is executed. For compatibility with other GNU software that attempts to be POSIX.2
compliant, bash also enters POSIX mode if either of the variables POSIX_PEDANTIC or
POSIXLY_CORRECT is set when bash is started or assigned a value during execution. When bash is
started in POSIX mode, for example, the kill builtin’s !l option behaves differently: it lists the names of all
signals on a single line separated by spaces, rather than listing the signal names and their corresponding
numbers.

Some of the default bash behavior differs from other shells as a result of the POSIX standard. For
instance, bash includes the ! reserved word to negate the return status of a pipeline because it has been
dened by POSIX.2. Neither sh nor ksh has implemented that feature.

- 10 -

4.4. Features Unique to ksh
Ksh includes a number of features not in the currently-released version of bash, version 1.14. Unless

noted, none of these features is in the POSIX.2 standard. Where appropriate the equivalent bash features
are noted.

4.4.1. The ksh Language
A new compound command folds test into the ksh language, delimited by the reserved words [[and

]]. The syntax is identical to test with a few changes: for instance, instead of !a and !o, && and !! are
used. The words between [[and]] are not processed for word splitting or lename generation. The new
command does pattern matching as well as string comparison, a la the case command. This new control
structure does have the advantage of reducing common argument problems encountered using test (e.g. test
"$string", where $string expands to !f), but at the cost of bloating the language. The POSIX.2 test algo-
rithm that bash uses, along with some programmer care, alleviates those problems in a backwards-
compatible way with no additions to the language. The one capability of [[]] not available in bash is its
ability to test whether an individual set !o option is turned on or off.

Other parts of the ksh language are not common to bash. The ((...)) operator, equivalent to let "...",
is unique to ksh, as are the concept of co-processes and the time keyword to time commands and pipelines.

4.4.2. Functions and Aliases
The Korn shell has autoloaded functions. A function marked as autoload is not dened until it is

rst executed. When such a function is executed, a search is made through the directories in FPATH (a
colon-separated list of directories similar to PATH) for a le with the same name as the function. That le
is then read in as with the . command; presumably the function is dened therein. There is a pair of shell
functions included in the bash distribution (examples/functions/autoload) that provide much of this func-
tionality without changing the shell itself.

Ksh functions are scoped in such a way that the environment in which they are executed is closer to a
shell script environment. Bash uses the POSIX.2 scoping rules, which make the function execution envi-
ronment an exact copy of the shell environment with the replacement of the shell’s positional paramters
with the function arguments. Korn shell functions do not share options or traps with the invoking shell.

Ksh has tracked aliases, which alias a command name to its full pathname. Bash has true command
hashing.

4.4.3. Arrays
Arrays are an aspect of ksh that has no real bash equivalent. They are easy to create and manipulate:

an array is created automatically by using subscript assignment (name[index]=value), and any variable
may be referred to as an array. Ksh arrays, however, hav e several annoying limitations: they may be
indexed only up to 512 or 1024 elements, depending on how the shell is compiled, and there is only the
clumsy set -A to assign a list of values sequentially. Despite these limits, arrays are useful, if underutilized
by shell programmers.

4.4.4. Builtin Commands
Some of the builtin commands have been extended or are new in ksh. The print builtin was included

to work around the incompatibilities and limitations of echo. The whence command tells what would hap-
pen if each argument were typed as a command name. The cd builtin has been extended to take up to two
arguments: if two arguments are supplied, the second is substituted for the rst in the current directory
name and the shell changes to the resultant directory name. The ksh trap builtin accepts ERR and
DEBUG as trap names. The ERR trap is executed when a command fails; DEBUG is executed after every
simple command.

The bash distribution includes shell functions that implement print and whence and the extensions to
cd.

- 11 -

4.4.5. Expansion
The ksh lename generation (globbing) facilities have been extended beyond their bash and sh coun-

terparts. In this area, ksh can be thought of as egrep to the bash grep . Ksh globbing offers things like
alternation, the ability to match zero or more instances of a pattern, and the ability to match exactly one
occurrence of any of a list of patterns.

4.4.6. Startup Files
Ksh and bash execute startup les differently. Ksh expands ENV and sources the le it names for

ev ery shell. Bash sources $ENV only in non-interactive shells; interactive shells source xed les, as
explained in the previous section. The POSIX standard has specied the ksh behavior, so bash acts the
same as ksh if started with the !posix or !o posix options.

4.4.7. History
Finally, the ksh history implementation differs slightly from bash. Each instance of bash keeps the

history list in memory and offers options to the history builtin to write the list to or read it from a named
le. Ksh keeps the history in a le, which it accesses each time a command is saved to or retrieved from
the history. Ksh history les may be shared among different concurrent instances of ksh, which could be a
benet to the user.

5. Features in Bash-2.0
The next release of bash, 2.0, will be a major overhaul. It will include many new features, for both

programming and interactive use. Redundant existing functions will be removed. There are several cases
where bash treats a variable specially to enable functionality available another way ($nolinks vs. set -o
physical, for example); the special treatment of the variable name will be removed.

5.1. Arrays
Bash-2.0 will include arrays which are a superset of those in ksh, with the size limitations removed.

The declare, readonly, and export builtins will accept options to specify arrays, and the read builtin will
have an option to read a list of words and assign them directly to an array. There will also be a new array
compound assignment syntax available for assignment statements and the declare builtin. This new syntax
has the form name=(value1 ... valueN), where each value has the form [subscript]=string. Only the string
is required. If the optional brackets and subscript are included, that index is assigned to, otherwise the
index of the element assigned is the last index assigned to by the statement plus one. Indexing starts at
zero. The same syntax is accepted by declare. Individual array elements may be assigned to using the ksh
name[subscript]=value.

5.2. Dynamic Loading
On systems that support the dlopen(3) library function, bash-2.0 will allow new builtins to be loaded

into a running shell from a shared object le. The new builtins will have access to the rest of the shell facil-
ities, but programmers will be subject to a few structural rules. This will be provided via a new option to
enable.

5.3. Builtins
Some of the existing builtins will change in bash-2.0. As previously noted, declare, export, read-

only, and read will accept new options to specify arrays. The jobs builtin will be able to list only stopped
or running jobs. The enable command will take a new !s option to restrict its actions to the POSIX.2 spe-
cial builtins. Kill will be able to list signal numbers corresponding to individual signal names. The read-
line library interface, bind, will have an option to remove the binding for any key sequence (which is not
the same as binding it to self-insert).

There will be two new builtin commands in bash-2.0. The disown command will remove jobs from
bash’s internal jobs table when job control is active. A disowned job will not be listed by the jobs com-
mand, nor will its exit status be reported. Disowned jobs will not be sent a SIGHUP when an interactive

- 12 -

shell exits. Most of the shell’s optional or toggled functionality will be folded into the new shopt builtin.
Many of the variables which alter the shell’s behavior when set (regardless of their value) will be made
options settable with shopt. Examples of such variables include allow_null_glob_expansion,
glob_dot_lenames, and MAIL_WARNING.

5.4. Variables and Variable Expansion
Bash-2.0 will implement several new variable expansions. These will answer several of the most per-

sistant requests for new features. It will be possible to ‘‘indirectly reference’’ a variable with an expansion,
like using eval \$${name} to reference a variable named by ${name}. Expansions will be available
to retrieve substrings of variables in an awk-like manner: starting at a specic index, retrieving some num-
ber of characters or the rest of the string. It will be possible to retrieve sequences of array elements like
this, too. It would be nice to have a way to replace portions of a variable matching a pattern the same way
leading or trailing substrings are presently stripped; that capability may be available.

Another new expansion will provide a way to create strings containing arbitrary characters, which is
inconvenient in the current version. Words of the form $’string’ will expand to string with backslash-
escaped characters in string replaced as specied by the ANSI C standard. As with other single-quoted
shell strings, the only character that may not appear in string is a single quote.

The shell variables will change also. A new variable HISTIGNORE will supersede HISTCON-
TROL. HISTIGNORE is the history analogy of FIGNORE: a colon-separated list of patterns specifying
commands to omit from the history list. The special pattern ’&’ will match the previous history line, to
provide the HISTCONTROL ignoredups behavior. Many variables which modify the shell’s behavior
will lose their special meaning. Variables such as notify and noclobber which provide functionality avail-
able via other mechanisms will no longer be treated specially. Other variables will be folded into shopt.
The history_control and hostname_completion_le variables, superseded by HISTCONTROL and
HOSTFILE respectively, will be removed.

5.5. Readline
Naturally, there will be improvements to readline as well. All of the POSIX.2 vi-mode editing com-

mands will be implemented; missing commands like ‘m’ to save the current cursor position (mark) and the
‘@’ command for macro expansion will be available. The ability to set the mark and exchange the current
cursor position (point) and mark will be added to the readline emacs mode as well. Since there are com-
mands to set the mark, commands to manipulate the region (the characters between the point and the mark)
will be available. Commands have been added to the readline emacs mode for more complete ksh compati-
bility, such as the C-]c character search command.

5.6. Conguration
Bash was the rst GNU program to completely autocongure. Its autoconguration mechanism pre-

dates autoconf, the current GNU conguration program, and needs updating. Bash-2.0 may include an
autoconf-based conguration script, if necessary new functionality can be added to autoconf, or its limita-
tions bypassed.

5.7. Miscellaneous
The POSIX mode will be improved in bash-2.0; it will provide a more complete superset of the

POSIX standard. For the rst time, bash will recognize the existance of the POSIX.2 special builtins.
A new trap value, DEBUG, will be present, as in ksh. Commands specied with a DEBUG trap will

be executed after every simple command. Since this makes shell script debuggers possible, I hope to
include a bash debugger in the bash-2.0 release.

6. Availability
The current version of bash is available for anonymous FTP from prep.ai.mit.edu as

/pub/gnu/bash-1.14.2.tar.gz .

- 13 -

7. Conclusion
This paper has presented an overview of bash, compared its features with those of other shells, and

hinted at features in the next release, bash-2.0.
Bash is a solid replacement for sh. It is sufciently portable to run on nearly every version of UNIX

from 4.3 BSD to SVR4.2, and several UNIX workalikes, and robust enough to replace sh on most of those
systems, It is very close to POSIX.2-conformant in POSIX mode, and is getting faster. It is not, unfortu-
nately, getting smaller, but there are many optional features. It is very easy to build a small subset to use as
a direct replacement for /bin/sh.

Bash has thousands of users worldwide, all of whom have helped to make it better. Another testa-
ment to the benets of free software.

8. References
[1] S. R. Bourne, ‘‘UNIX Time-Sharing System: The UNIX Shell’’, Bell System Technical Journal, 57(6),
July-August, 1978, pp. 1971-1990.
[2] Morris Bolsky and David Korn, The KornShell Command and Programming Language, Prentice Hall,
1989.
[3] Bill Joy, An Introduction to the C Shell, UNIX User’s Supplementary Documents, University of Califor-
nia at Berkeley, 1986.
[4] IEEE, IEEE Standard for Information Technology -- Portable Operating System Interface (POSIX) Part
2: Shell and Utilities, 1992.

9. Author Information
Chet Ramey is a software engineer working at Case Western Reserve University. He has a B.S. in

Computer Engineering and an M.S. in Computer Science, both from CWRU. He has been working on bash
for six years, and the primary maintainer for one.

