Bash — The GNU shell*

Chet Ramey
Case Western Reserve University
chet@po.cwru.edu

1. Introduction

Bashis the shell, or command language interpreteat will appear in the GNU operating system.
The name is an acronym for the “Bourne-Again SHell”, a pun oveSeurne, the author of the direct
ancestor of the currenNix® shell /bin/sh which appeared in the Gmth Edition Bell Labs Researclen
sion of UNIX.

Bash is arsh—compatible shell that incorporates useful features from tra khell ksh) and the C
shell €sh), described later in this articldt is ultimately intended to be a conformant implementation of the
IEEE POSIX Shell and Utilities specification (IEEE Working Group 1003.2).offers functional
improvements @er sh for both interactie and programming use.

While the GNU operating system will most likely include a version of theedgrishell csh, Bash
will be the default shellLike aher GNU softvare, Bash is quite portable. It currently runs on neasyye
version ofUNIX and a fev other operating systems — an independently-supported port exists for OS/2, and
there are rumors of ports to DOS anéhidws NT. Ports toUNIX-like sg/stems such as QNX and Minix
are part of the distribution.

The original author of Bash was Brian Fox, an employee of the Free Softaardaion. Theur-
rent deeloper and maintainer is Chet Rayna lunteer who works at Case Western Reséiviversity.

2. What's POSIX, anyway?

POSIXis a name originally coined by Richard Stallman for a family of open system standards based
on UNIX. There are a number of aspectsunfiX under consideration for standardization, from the basic
system services at the system call and C librasgt te applications and tools to system administration and
management. Eadrea of standardization is assigned to a working group in the 1003 series.

The POSIX Shell and Utilities standard has beeweldped by IEEE Wrking Group 1003.2
(POSIX.2).F It concentrates on the command interpreter auerdind utility programs commonlyeeuted
from the command line or by other programs. An initiaision of the standard has been apgitcend
published by the IEEE, and work is currently underway to update it. There are four primary areds of w
in the 1003.2 standard:

. Aspects of the shel’syntax and command languagA. number of special builtins such ad and
execare being specified as part of the shell, since their functionality usually cannot be implemented
by a separatexecutable;

. A set of utilities to be called by shell scripts and applicatidiisamples are programs dilsed, tr
andawk. Utilities commonly implemented as shellibins are described in this section, suchesss
andkill . An expansion of this sectiog’sope, termed the User Portability Extension, or UPE, has
standardized interagé programs such ag andmailx;

. A group of functional integces to services provided by the shell, such as the tradisigaalen()
C library function. There are functions to perform shell woxdamsions, perform filenamepan-
sion @lobbing, obtain values of POSIX.2 system configuratioariables, retriee values of

*An earlier version of this article appeared in The Linux Journal.

$IEEE, IEEE Standad for Information Echnolay -- Portable Opeating System Interface (POSIX) Part 2:
Shell and Utilities 1992.

environment variablegét env()), and other services;
. A suite of “development” utilities such as89 (the POSIX.2 version afc), andyacc.

Bash is concerned with the aspects of the shiethavior defined by POSIX.2. The shell command
language has of course been standardized, including the basicofierol and programxecution con-
structs, 1/O redirection and pipelining, argument handling, variable expansion, and qudtegpecial
builtins, which must be implemented as part of the shell to provide the desired functj@nalgpecified
as being part of the shell; examples of theseeageandexport. Other utilities appear in the sections of
POSIX.2 not deoted to the shell which are commonly (and in some cases must be) implemeniétinas b
commands, such asad andtest POSIX.2 also specifies aspects of the shdififeractve behavior as part
of the UPE, including job control and command line editing. Interestingly enoughyiestiyle line edit-
ing commands he been standardizeémacsditing commands were left out due to objections.

While POSIX.2 includes much of what the shell has traditionallyigeal, some important things
have been omitted as being “beyond its scdpEhere is, for instance, no mention of a difference between a
login shell and ay other interactie dell (since POSIX.2 does not specify a login program). Nedfix
startup files are defined, either — the standard does not metifite.

3. BasicBash features

Since the Bourne shell provides Bash with most of its philosophical underpinnings, Bash inherits
most of its features and functionality from dBash implements all of the traditional shvwiloontrol con-
structs for, if, while, etc.). All of the Bourne shell builtins, including those not specified in the POSIX.2
standard, appear in BasBhellfunctions introduced in the SVR2evsion of the Bourne shell, are similar
to shell scripts, but are defined using a special syntax ancemated in the same process as the calling
shell. Bashhas shell functions which belain a fashion upward-compatible with sh functions. There are
certain shell griables that Bash interprets in the same way as sh, sueBla$-S, and PATH. Bash
implements essentially the same gramnparameter and variable expansion semantics, redirection, and
guoting as the Bourne shell. Where differences appear between the POSIX.2 standard and traditional sh
behavior Bash follows POSIX.

The Korn Shell Ksh) is a descendant of the Bourne shell written dt€A Bell Laboratories by
David Kornt. Itprovides a number of useful features that POSIX and Bagh &ilpted. Maw of the
interactve facilities in POSIX.2 hee their roots in the ksh: forxample, the POSIX and ksh job control
facilities are nearly identical. Bash includes features from the Korn Shell for both intenasetiand shell
programming. Br programming, Bash provides variables suciRANNDOM and REPLY, the typeset
builtin, the ability to remae substrings from variables based on patterns, and shell arithniRANDOM
expands to a random number each time it is referenced; assignaligeatedRANDOM seeds the random
number generatoREPLY is the default variable used by ttead builtin when no variable names are sup-
plied as aguments. Theypesetbuiltin is used to define variables andigithhem attributes such asad-
only. Bash arithmetic allows thevaluation of an expression and the substitution of the result. Sdréll v
ables may be used as operands, and the result of an expression may be assigréabte. aNearlall of
the operators from the C language aralable, with the same precedence rules:

$ echo $((3 + 5 * 32))
163

For interactve wse, Bash implements ksh-style aliases and builtins sufth(dscussed below) arjdbs.
Bash aliases allw a dring to be substituted for a command nariiéey can be used to create a mnemonic
for aUNIX command namea(i as del =rnj, to expand a single word to a compleommand &l i as
news='xterm-g 80x45 -title trn -e trn -e -S1 -N &), or to ensure that a command
is invoked with a basic set of optional(i as | s="/bin/ls -F").

The C shell¢sh, originally written by Bill Jg while at Berleley, is widely used and quite popular
for its interactve facilities. Bashincludes a csh-compatible historypansion mechanism (“! history”),
brace &pansion, access to a stack of directories vigtishd, popd, and dirs builtins, and tilde gpansion,
to generate users’ home directoriéBlde expansion has also been adopted by both the Korn Shell and

TtMorris Bolsky and David Korn,The KornShell Command andd@ramming Languge, Prentice Hall, 1989.

POSIX.2.

There were certain areas in which POSIX.2 felt standardizatsmecessarput no existing imple-
mentation provided the proper bglm. The working group inented and standardized functionality in
these areas, which Bash implemenitsie command builtin was irvented so that shell functions could be
written to replace builtins; it makes the capabilities of thétib available to the function. The rese
word “I” was added to rgge the return value of a command or pipeline; &swnearly impossible to
express “if not x” cleanly using the sh language. There exist multiple incompatible implementations of the
test builtin, which tests files for type and other attribs and performs arithmetic and string comparisons.
POSIX considered none of these correct, so the standard behavior was specified in terms of the number of
arguments to the command. POSIX.2 dictates exactly what will happen when four or fewer arguments are
given to test, and leaves the behavior undefined when more arguments are supplied. Bash uses the
POSIX.2 algorithm, which was conged by David Korn.

3.1. Features not in the Bourne Shell

There are a number of minor féifences between Bash and the version of sh present on most other
versions ofUNIX. The majority of these are due to the POSIX standard, but some are the result of Bash
adopting features from other shellBor instance, Bash includes thean&” reserved word, theommand
builtin, the ability of theread builtin to correctly return a line ending with a backslash, symbotjoraents
to theumask builtin, variable substring renwval, a way to get the length of a variable, and thes @go-
rithm for thetest builtin from the POSIX.2 standard, none of which appear in sh.

Bash also implements the “$(...)" command substitution syntax, which supersedes the sh ‘..." con-
struct. The'$(...)"” construct expands to the output of the command contained within the parentheses, with
trailing newlines remeed. Thesh syntax is accepted for backwards compatibitiy the “$(...)" form is
preferred because its quoting rules are much simpler and it is easier to nest.

The Bourne shell does not provide such features as brace expansion, the ability to defalgdea v
and a function with the same name, localiables in shell functions, the ability to enable and disable indi-
vidual builtins or write a function to replace ailbin, or a means to export a shell function to a child
process.

Bash has closed a long-standing shell security hole by not usigiFRBeariable to split each ard
read by the shell, but splitting only the results xpansion (ksh and the 4.4 BSD shvéndixed this as
well). Usefulbehaior such as a means to abaxeeution of a script read with the’‘'tommand using the
return builtin or automatically exportingariables in the she’environment to children is also not present
in the Bourne shellBash provides a much more powerful environment for both inteeaate and pro-
gramming.

4. Bash-specifid-eatures

This section details avieof the features which makBash unique.Most of them provide impred
interactve wse, but a f& programming impreements are present as well. Full descriptions of these fea-
tures can be found in the Bash documentation.

4.1. StartupFiles

Bash aecutes startup files differently than other shellsie Bash behavior is a compromise between
the csh principle of startup files with fixed nameecated for each shell and the sh “minimalist” beba
An interactve instance of Bash started as a login shell reads aecutes”/.bash_profile(the file
.bash_profile in the userrome directory), if it gists. Aninteractve ron-login shell reads andckecutes
“I.bashrc A non-interactie sell (one begun toxecute a shell script, for example) reads no fixed startup
file, but uses the value of thariable$ENV, if set, as the name of a startup file. The ksh practice of read-
ing $ENV for every shell, with the accompaimg difficulty of defining the proper variables and functions
for interactve and non-interactie dhells or having the file read only for interaetidells, was considered
too comple. Easeof use won out herelnterestingly the net release of ksh will change to readfbigNV

TBill Joy, An Introduction to the C ShelUNIX Users Sipplementary Documentsniversity of California at
Berkelgy, 1986.

only for interactve dells.

4.2. NewBuiltin Commands

There are a f& builtins which are n& or havebeen extended in Basli.he enable builtin allows
builtin commands to be turned on and aibitrarily. To use the version oéchofound in a uses ®arch
path rather than the Bashiltin, enabl e - n echo suffices. Thehelp builtin provides quick synopses
of the shell &cilities without requiring access to a manual pageiltin is similar tocommandin that it
bypasses shell functions and directkpautes builtin commands. Access to a csh-style stack of directories
is provided via thepushd, popd, and dirs builtins. Pushdandpopd insert and reme drectories from the
stack, respeately, and dirs lists the stack contents. On systems thatwalfme-grained control of
resources, thelimit builtin can be used to tune these settingBimit allows a user to control, among
other things, whether core dumps are to be generatedmoch memory the shell or a child process is
allowed to allocate, and lolamge a file created by a child process camgrdhe suspendcommand will
stop the shell process when job control isvactinost other shells do not allothemseles to be stopped
like that. Type,the Bash answer tohich andwhence,shavs what will happen when a word is typed as a
command:

$ type export
export is a shell builtin
$ type -t export

builtin

$ type bash

bash is /bin/bash
$ type cd

cd is a function
cd ()

{

builtin cd ${1+"$@} && xtitle $HOST: $PWD
}

Various modes tell what a commanand is (reserved word, alias, function, builtin, or file) or whien-v
sion of a command will bexecuted based on a userearch path. Some of this functionality has been
adopted by POSIX.2 and folded into t@mmand utility.

4.3. Editingand Completion

One area in which Bash shines is command line editing. Bash usesdlire library to read and
edit lines when interacte. Readline is a powerful and flexible inpuacflity that a user can configure to
individual tastes. It allows lines to be edited using either emacs or vi commands, where those commands
are appropriate. The full capability of emacs is not present — there is no wagtteea named command
with M-x, for instance — but thexisting commands are more than adequate. The vi mode is compliant
with the command line editing standardized by POSIX.2.

Readline is fully customizableln addition to the basic commands arel kindings, the library
allows users to define additionadkhindings using a startup fileTheinputrcfile, which defaults to the file
“linputrg, is read each time readline initializes, permitting users to maintain a consistent interface across a
set of programs. Readline includes an extensible aterfso each program using the library can add its
own hindable commands and program-speciiy kindings. Bastuses this facility to add bindings that
perform history expansion or shell word expansions on the current input line.

Readline interprets a number adriables which further tune its betar. Variables exist to control
whether or not eight-bit characters are directly read as input wertech to meta-prefixeddy squences (a
meta-prefied key quence consists of the character with the eighth bit zeroed, precededrstatpmefix
characterusually escape, which selects an altern&ignap), to decide whether to output characters with
the eighth bit set directly or as a meta-prefixey quence, whether or not to wrap to avrsereen line
when a line being edited is longer than the screen width,eyredp to which subsequenek bindings
should applyor even what happens when readline wants to ring the terrsiall. All of these wariables

can be set in the inputrc file.

The startup file understands a set of C preprocdiksoonditional constructs which allovariables
or key hindings to be assigned based on the application using readline, the terminal currently being used, or
the editing mode. Users can add program-specific bindings te tmaik lives easier: Ihave hindings that
let me edit the value &fPATH and double-quote the current or previous word:

Macros that are convenient for shell interaction
$i f Bash

edit the path

"\Cxp": "PATH=${PATH\e\C-e\C-a\ef\C-f"

prepare to type a quoted word -- insert open and cl ose doubl e
quotes and nove to just after the open quote
"NCx\"tr AN G b

Quote the current or previous word
"\Cxq": "\eb\"\ef\""
$endi f

There is a readline command to re-read the file, so users can edit the file, change some bindirgjs, and be
to use them almost immediately.

Bash implements thleind builtin for more dynamic control of readline than the startup file permits.
Bind is used in seeral ways. Inlist mode, it can display the currergyklindings, list all the readline edit-
ing directives available for binding, list which &ys invoke a gven directive, or output the current set oely
bindings in a format that can be incorporated directly into an inputrdfillbatchmode, it reads a series of
key bindings directly from a file and passes them to readline. In its most common hisagekes a sin-
gle string and passes it directly to readline, which interprets the line as if it had just been read from the
inputrc file. Both ley bindings and variable assignments may appear in the striagtgibind.

The readline library also provides an interfaceviord completion When thecompletioncharacter
(usually TAB) is typed, readline looks at th@nd currently being entered and computes the set of file-
names of which the current word is a valid prefiikthere is only one possible completion, the rest of the
characters are inserted directitherwise the common prefix of the set of filenames is added to the current
word. A second TAB character entered immediately after a non-unique completion causes readline to list
the possible completions; there is an option teehtae list displayed immediatelyReadline preides
hooks so that applications can provide specific types of completion before dhé# ilefhame completion
is attempted. This is quite flexible, though it is not completely-psegrammable. Baslipr example, can
complete filenames, command names (including aliases, builtins, shell reserved words, shell functions, and
executables found in the file system), shell variables, usernames, and hostitamses. a set of heuristics
that, while not perfect, is generally quite good at determining what type of completion to attempt.

4.4. History

Access to the list of commands previously entereddginemand historyis provided jointly by Bash
and the readline libraryBash provides variable$ISTFILE , $HISTSIZE, and $HISTCONTROL) and
the history andfc builtins to manipulate the history lisfThe value offHISTFILE specifies the file where
Bash writes the command history ariteand reads it on startuHISTSIZE is used to limit the number
of commands sexd in the history $SHISTCONTROL provides a crude form of controver which com-
mands are s&d on he history list: a value afnorespacaneans to not s& mmmands which begin with a
space; a value agnoredupsmeans to not s& @mmands identical to the last commandeda $HIST-
CONTROL was named$history_control in earlier versions of Bash; the old name is still accepted for
backwards compatibility The history command can read or write files containing the history list and dis-
play the current list content§.hefc builtin, adopted from POSIX.2 and the Korn Shell, allows display and
re-execution, with optional editing, of commands from the history list. The readline library offers a set of
commands to search the history list for a portion of the current input line or a string typed by .the user
Finally, the historylibrary, generally incorporated directly into the readline libramyplements a facility for
history recall, gpansion, and rexecution of previous commands very similar to csh (“bang history”, so
called because the exclamation point introduces a history substitution):

$ echoabcde
abcde
$!1 f ghi

echo abcdef gh
abcdefgh

$1-2

echo abcde
abcde
$ echo !-2:
echo a b ¢
abcd

1-4
d

The command history is only sl when the shell is interags, so it is rot available for use by shell
scripts.

4.5. NewShell Variables

There are a number of camience variables that Bash interprets to enlifie easier These include
FIGNORE, which is a set of filename dixfes identifying files to exclude when completing filenames;
HOSTTYPE, which is automatically set to a string describing the type of henelan which Bash is cur
rently executing; command_oriented_history which directs Bash to ga dl lines of a multiple-line com-
mand such as @ahile or for loop in a single history entnalowing easy re-editing; anlGNOREEOF,
whose value indicates the number of conseeUOF characters that an interaetidell will read before
exiting — an easy way to keep yourself from being logged out accidenfiily auto_resumevariable
alters the way the shell treats simple command names: if job controlvis act this variable is set, sin-
gle-word simple commands without redirections cause the shell to first look for and restart a suspended job
with that name before starting amprocess.

4.6. BraceExpansion

Since sh offers no ceanient way to generate arbitrary strings that share a common prefixfigr suf
(flename expansion requires that the filenamest)e Bash implementbrace epansion a @apability
picked up from csh.Brace expansion is similar to flename expansion, but the strings generated need not
correspond to existing filesA brace expression consists of an optiop@amble followed by a pair of
braces enclosing a series of comma-separated strings, and an optetahble The preamble is
prepended to each string within the braces, and the postamble is then appended to each resulting string:

$ echo a{d,c, b}e
ade ace abe

As this example demonstrates, the results of bragansion are not sorted, asyttaee by filename xpan-
sion.

4.7. Process Substitution

On systems that can support it, Bash provides a facilitywkrasprocess substitutionProcess sub-
stitution is similar to command substitution in that its specification includes a commareguteebut the
shell does not collect the commasiditput and insert it into the command linkathey Bash opens a pipe
to the command, which is run in the background. The shell uses named pipes (FIFOs)dew/tte
method of naming open files tapand the process substitution to a filename which connects to the pipe
when openedThis filename becomes the result of tRpansion. Procesaubstitution can be used to com-
pare the outputs of owdifferent versions of an application as part of a regression test:

$ cnp <(old_prog) <(new_prog)

4.8. Prompt Customization

One of the more popular interaai features that Bash prides is the ability to customize the
prompt. Both$PSland$PS2,the primary and secondary prompts, atpamded before being displayed.
Paameter and variablexpansion is performed when the prompt string is expanded,ysshel variable
can be put into the prompt (e.§SHLVL, which indicates he deeply the current shell is nestedash
specially interprets characters in the prompt string preceded by a backslash. Some of these backslash
escapes are replaced with the current time, the date, the current working dithetasername, and the
command number or history number of the command being entéhete is gen a kackslash escape to
cause the shell to change its prompt when running as root afiar Before printing each primary prompt,
Bash expands theaviable$PROMPT_COMMAND and, if it has a alue, &ecutes the expanded value as
a command, allwing additional prompt customizatiorzor example, this assignment causes the current
user the current host, the time, the last component of the current working dirgbtoigrel of shell nest-
ing, and the history number of the current command to be embedded into the primary prompt:

$ PS1="\u@h [\t] \WSSHLVL:\!)\$ "’
chet @din [21: 03:44] docunentation(2:636)% cd ..
chet @din [21:03:54] src(2:637)$

The string being assigned is surrounded by single quotes so that if it is exported, the $SHEGL will
be updated by a child shell:

chet @din [21:17:35] src(2:638)$ export PS1
chet @din [21:17:40] src(2:639)$ bash
chet @din [21:17:46] src(3:696)$%

The \$ escape is displayed &5 When running as a normal usbkut as #’ when running as root.

4.9. FileSystem Views

Since Berkley introduced symbolic links in 4.2 BSD, one of their most gimgpproperties has been
the “warping” to a completely different area of the file system when wsingnd the resultant non-intu-
itive kehavior of “cd .”. The UNIX kernel treats symbolic linkphysically When the kernel is translating
a pathname in which one component is a symbolic link, it replaces all or part of the pathname while pro-
cessing the link. If the contents of the symbolic linkjibewith a slash, the kernel replaces the pathname
entirely; if not, the link contents replace the current component. In either case, the symbolic link is visible.
If the link value is an absolute pathname, the user finds himself in a compldeigrdipart of the file sys-
tem.

Bash provides #ogical view of the file system. In this default mode, command and filename com-
pletion and builtin commands such@bsandpushd which change the current working directory transpar
ently follow symbolic links as if thg were directoriesThe $PWD variable, which holds the shedlidea of
the current working directoryglepends on the path used to reach the directory rather than its physical loca-
tion in the local file system hierargchFor example:

$ cd /usr/local/bin
$ echo $PWD
/usr/local/bin

$ pwd

/usr/local/bin

$ /bin/ pwd

/ net/share/ sun4/ 1 ocal /bin
$ cd ..

$ pwd

/usr/1ocal

$ /bin/ pwd

/ net/ share/ sun4/| ocal
$ cd ..

$ pwd

[usr

$ /bin/ pwd
[usr

One problem with this, of course, arises when programs that do not understand théoglezl’ notion of
the file system interpret * differently. This generally happens when Bash completes filenames containing

.." according to a logical hierarghwhich does not correspond to theirypital location. For users who
find this troublesome, a correspondpigysicalview of the file system is\ailable:

$ cd /usr/local/bin

$ pwd

/fusr/local/bin

$ set -0 physical

$ pwd

/ net/share/ sun4/ 1 ocal /bin

4.10. Intemationalization

One of the most significant imprements in version 1.13 of Bash was the change to “eight-bit clean-
liness”. Preious \ersions used the eighth bit of characters to mark whether or yowéne quoted when
performing word epansions. Whilehis did not afect the majority of users, most of whom used only
seven-bit ASCII characters, some found it confininBeginning with version 1.13, Bash implemented a
different quoting mechanism that did not alter the eighth bit of charadteisallowed Bash to manipulate
files with “odd” characters in their names, but did nothing to help users enter those namesipaolvl3
introduced changes to readline that made it eight-bit clean as well. Options exist that force readline to
attach no special significance to characters with the eighth bit set (the default behavior vertaloese
characters to meta-prefixedyksquences) and to output these characters withowersion to meta-pre-
fixed sequencesThese changes, along with the expansioregiriaps to a full eight bits, enable readline to
work with most of the ISO-8859 family of character sets, used by fBaropean countries.

4.11. POSIXMode

Although Bash is intended to be POSIX.2 conformant, there are areas in which the defaidr beha
is not compatible with the standarBor users who wish to operate in a strict POSIX.2 environment, Bash
implements @0SIX mode When this mode is ag®, Bash modifies its default operation where ifedi
from POSIX.2 to match the standafdOSIX mode is entered when Bash is started withpgbsix option.

This feature is alsovailable as an option to theetbuiltin, set -o posix For compatibility with other GNU
software that attempts to be POSIX.2 compliant, Bash also enters POSIX mode ifarthblev
$POSIXLY_CORRECT is set when Bash is started or assigned auev during recution.
$POSIX_PEDANTIC is accepted as well, to be compatible with some older GNU utilities. When Bash is
started in POSIX mode, for example, it sources the file named bylie of SENV rather than the “ner

mal” startup files, and does not alloeserved words to be aliased.

5. NewFeatures and Future Pans

There are seeral features introduced in the currergrsion of Bash, version 1.14, and a number
under consideration for future releasé@is section will briefly detail the mefeatures in version 1.14 and
describe seeral features that may appear in later versions.

5.1. NewFeatures in Bash-1.14

The nev features wailable in Bash-1.14 answerwa&eal of the most common requests for enhance-
ments. Moshotably there is a mechanism for including non-visible character sequences in prompts, such
as those which cause a terminal to print charactersferefit colors or in standout mode. There was noth-
ing preventing the use of these sequences in earbesions, but the readline redisplay algorithm assumed
each character occupied physical screen space and would wrap lines prematurely.

Readline has a¥enew vaiables, seeral nev bindable commands, and some additional emacs mode
default key bndings. Anew history search mode has been implemented: in this mode, readline searches
the history for lines beginning with the characters between the beginning of the current line and the cursor
The «isting readline incremental search commands no longer match identical lines more thaRilence.
name completion mo expands variables in directory nameshe history expansion facilities arewo
nearly completely csh-compatible: missing modifiersehbeen added and history substitution has been
extended.

Several of the features described easli@rch asset -0 posixand$POSIX_PEDANTIC, are nav in
version 1.14. There is a neshell variable,OSTYPE, to which Bash assigns a value that identifies #re v
sion of UNIX it's running on (great for putting architecture-specific binary directories intGRAEH).

Two variables hae been renamed$HISTCONTROL replaces$history_control, and $HOSTFILE
replacesthostname_completion_file In both cases, the old names are accepted for tads/compatibil-

ity. The kshselectconstruct, which allows the generation of simple menus, has been implemieted.
capabilities hee keen added toxésting \ariables:$auto_resumecan nev take values ofexact or sub-
string, and $HISTCONTROL understands thealue ignoreboth which combines the tw previously
acceptable alues. Thedirs builtin has acquired options to print out specific members of the directory
stack. Thebnolinks variable, which forces a physical wieof the file system, has been superseded by the
—P option to thesetbuiltin (equivalent toset -o plysical); the variable is retained for backwards compati-
bility. The version string contained $8ASH_VERSION now includes an indication of the patclvdeas

well as the “build ersion”. Somdittle-used features lva keen remued: thebye synorym for exit and

the SNO_PROMPT_VARS variable are gone. There iswaan aganized test suite that can be run as a
regression test when building amneersion of Bash.

The documentation has been thoroughhgrbauled: there is a memanual page on the readline
library and thenfo file has been updated to reflect the curremsion. Asalways, as may bugs as possi-
ble hare keen fixed, although some surely remain.

5.2. OtherFeatures

There are a fe features that | hope to include in later Bash releases. Some are basedkon w
already done in other shells.

In addition to simple ariables, a future release of Bash will include one-dimensional arrays, using
the ksh implementation of arrays as a modelditions to the ksh syntax, such\wwname(...) to assign
a list of words directly to an array and a mechanism toaattee read builtin to read a list of values directly
into an arraywould be desirableGiven those extensions, the ksat —Asyntax may not be worth support-
ing (the—A option assigns a list of values to an artay is a rather peculiar special case).

Some shells include a meansppbgrammableword completion, where the user specifies on a per
command basis othe arguments of the command are to be treated when completion is attempted: as file-
names, hostnamesgeeutable files, and so o he other aspects of the current Bash implementation could
remain as-is; the existing heuristicewld still be walid. Onlywhen completing the arguments to a simple
command would the programmable completion be in effect.

It would also be nice to g the user finer-grained controv@ which commands are wal onto the
history list. One proposal is for a variable, teneyi namedHISTIGNORE , which would contain a
colon-separated list of commands. Lines beginning with these commands, after the restriGioiSTof
CONTROL have keen applied, would not be placed onto the history list. The shell pattern-matching capa-
bilities could also bewilable when specifying the contents®HISTIGNORE .

One thing that newer shells suchvalssh (also known asltksh) provide is a command to dynami-
cally load code implementing additional builtin commands into a running shieit nev builtin would
take an dject file or shared library implementing the “body” of the builiirx(_builtin()for those &miliar
with Bash internals) and a structure containing the name of heamemand, the function to call when the
new builtin is invoked (presumably defined in the shared object specified as an argument), and the docu-
mentation to be printed by theslp command (possibly present in the shared object as well).outdw
manage the details of extending the internal table of builtins.

-10-

A few aher builtins would also be desirable:ahaere the POSIX.Zyetconf command, which prints
the values of system configuratioariables defined by POSIX.2, anddsown builtin, which causes a
shell running with job control ae t “forget about” one or more background jobs in its internal jobs ta-
ble. Usinggetconf for example, a user could retreea \alue for $PATH guaranteed to find all of the
POSIX standard utilities, or find out\Wwdong filenames may be in the file system containing a specified
directory.

There are no implementation timetables foy ai these features, nor are there concrete plans to
include them. If anyone has comments on these proposals, feel free to send me electronic mail.

6. Reflectionsand Lessons Learned

The lesson that has been repeated most often during Bagbpaeent is that there are dark corners
in the Bourne shell, and people use all of thémthe original description of the Bourne shell, quoting and
the shell grammar are both poorly specified and incomplete; subsequent descriptams halped much.
The grammar presented in Bousghper describing the shell distifed with the Seenth Edition of
UNIX T is so fr of that it does not alle the commanaho| we. In fact, as Tom Duifstates:

Nobody really knows what the Bourne shelffammar is. Even examination of the source
code is little help.+

The POSIX.2 standard includeyaccgrammar that comes close to capturing the Bourne slelavior,

but it disallovs some constructs which sh accepts without complaint — and there are scripts out there that
use them. It took a ¥e versions and seral bug reports before Bash implemented sh-compatible quoting,
and there are still some gd” sh constructs which Bash flags as syntax err@smplete sh compatibility

is a tough nut.

The shell is bigger and slower than | wouldelikhough the current version is substantiadigtér
than preiously. The readline library could stand a substantiatite. A hand-written parser to replace the
currentyaccgenerated one auld probably result in a speedup, and wouldesahe glaring problemthe
shell could parse commands in “$(...)" constructs ag &he entered, rather than reporting errors when the
construct is expanded.

As alwvays, there is some cHab go with the wheat.Areas of duplicated functionality need to be
cleaned up. There areveeal cases where Bash treats a variable specially to enable functiowaldypla
another way$notify vs. set -o notifyand$nolinks vs. set -0 ptysical, for instance); the special treatment
of the variable name should probably be reedo A few more things could stand rewsb; the
$allow_null_glob_expansionand $glob_dot_filenamesvariables are of particularly questionablelue.
The $[...] arithmetic @aluation syntax is redundant wathat the POSIX-mandate$((...)) construct has
been implemented, and could be deleted. It would be nice if the text output Hslghmriltin were ecter-
nal to the shell rather than compiled intoTthe behavior enabled command_oriented_history which
causes the shell to attempt tovesal lines of a multi-line command in a single history ensiyould be
made the default and the variable rewrth

7. Availability

As with all other GNU software, Bash igadable for anonymous FTP froprep.ai.mit.edu:/pub/gnu
and from other GNU software mirror site$he current version is ibash-1.14.1.tar.gin that directory
Use archie to find the nearest arcld@ ste. The latest version is alays available for FTP from
bash.CWR.Edu:/pub/dist. Bash documentation ivalable for FTP frombash.CWR.Edu:/pub/bash.

The Free Software Foundation sells tapes and OM® containing Bash; send electronic mail to
gnu@rep. ai . mt.eduorcall+1-617-876- 3296 for more information.

Bash is also distributed withs®al versions olUNIX-compatible systemsilt is included as /bin/sh
and /bin/bash on seral Linux distributions (more about the difference in a moment), and as coetrib

1S. R. Bourne, “UNIX Time-Sharing System: The UNIX SheBgll System dthnical Dburnal, 57(6), July-
August, 1978, pp. 1971-1990.

FTom Duff, “Rc — A Shell for Plan 9 andNIX systems”Proc. of the Summer 1990 EUUG Cosefere Lon-
don, July 1990, pp. 21-33.

-11-

software in BSDB BSD/386* and FreeBSD.

The Linux distribution deserves special mention. There apeconfigurations included in the stan-
dard Bash distrilstion: a “normal” configuration, in which all of the standard features are included, and a
“minimal” configuration, which omits job control, aliases, history and command line editing, the directory
stack andpushd/popd/dirs, process substitution, prompt string special character decoding, ardl¢e
construct. Thigninimal version is designed to be a drop-in replacement for the traditidvial /bin/sh,
and is included as the Linux /bin/sh irveml packagings.

8. Conclusion

Bash is a wrthy successor to sh. It is sufficiently portable to run on neargyyeversion ofUNIX
from 4.3 BSD to SVR4.2, and\sal UNIX workalikes. Itis robust enough to replace sh on most of those
systems, and provides more functionality has segeral thousand regular users, and their feedback has
helped to mak it as gpod as it is today — a testament to the benefits of free software.

*BSD/386 is a trademark of Berkgl&oftware Design, Inc.

