/* * This small demo sends a simple sinusoidal wave to your speakers. */ #include #include #include #include #include #include #include "../include/asoundlib.h" #include #include static char *device = "plughw:0,0"; /* playback device */ static snd_pcm_format_t format = SND_PCM_FORMAT_S16; /* sample format */ static unsigned int rate = 44100; /* stream rate */ static unsigned int channels = 1; /* count of channels */ static unsigned int buffer_time = 500000; /* ring buffer length in us */ static unsigned int period_time = 100000; /* period time in us */ static double freq = 440; /* sinusoidal wave frequency in Hz */ static int verbose = 0; /* verbose flag */ static int resample = 1; /* enable alsa-lib resampling */ static int period_event = 0; /* produce poll event after each period */ static snd_pcm_sframes_t buffer_size; static snd_pcm_sframes_t period_size; static snd_output_t *output = NULL; static void generate_sine(const snd_pcm_channel_area_t *areas, snd_pcm_uframes_t offset, int count, double *_phase) { static double max_phase = 2. * M_PI; double phase = *_phase; double step = max_phase*freq/(double)rate; unsigned char *samples[channels]; int steps[channels]; unsigned int chn; int format_bits = snd_pcm_format_width(format); unsigned int maxval = (1 << (format_bits - 1)) - 1; int bps = format_bits / 8; /* bytes per sample */ int phys_bps = snd_pcm_format_physical_width(format) / 8; int big_endian = snd_pcm_format_big_endian(format) == 1; int to_unsigned = snd_pcm_format_unsigned(format) == 1; int is_float = (format == SND_PCM_FORMAT_FLOAT_LE || format == SND_PCM_FORMAT_FLOAT_BE); /* verify and prepare the contents of areas */ for (chn = 0; chn < channels; chn++) { if ((areas[chn].first % 8) != 0) { printf("areas[%u].first == %u, aborting...\n", chn, areas[chn].first); exit(EXIT_FAILURE); } samples[chn] = /*(signed short *)*/(((unsigned char *)areas[chn].addr) + (areas[chn].first / 8)); if ((areas[chn].step % 16) != 0) { printf("areas[%u].step == %u, aborting...\n", chn, areas[chn].step); exit(EXIT_FAILURE); } steps[chn] = areas[chn].step / 8; samples[chn] += offset * steps[chn]; } /* fill the channel areas */ while (count-- > 0) { union { float f; int i; } fval; int res, i; if (is_float) { fval.f = sin(phase); res = fval.i; } else res = sin(phase) * maxval; if (to_unsigned) res ^= 1U << (format_bits - 1); for (chn = 0; chn < channels; chn++) { /* Generate data in native endian format */ if (big_endian) { for (i = 0; i < bps; i++) *(samples[chn] + phys_bps - 1 - i) = (res >> i * 8) & 0xff; } else { for (i = 0; i < bps; i++) *(samples[chn] + i) = (res >> i * 8) & 0xff; } samples[chn] += steps[chn]; } phase += step; if (phase >= max_phase) phase -= max_phase; } *_phase = phase; } static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, snd_pcm_access_t access) { unsigned int rrate; snd_pcm_uframes_t size; int err, dir; /* choose all parameters */ err = snd_pcm_hw_params_any(handle, params); if (err < 0) { printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err)); return err; } /* set hardware resampling */ err = snd_pcm_hw_params_set_rate_resample(handle, params, resample); if (err < 0) { printf("Resampling setup failed for playback: %s\n", snd_strerror(err)); return err; } /* set the interleaved read/write format */ err = snd_pcm_hw_params_set_access(handle, params, access); if (err < 0) { printf("Access type not available for playback: %s\n", snd_strerror(err)); return err; } /* set the sample format */ err = snd_pcm_hw_params_set_format(handle, params, format); if (err < 0) { printf("Sample format not available for playback: %s\n", snd_strerror(err)); return err; } /* set the count of channels */ err = snd_pcm_hw_params_set_channels(handle, params, channels); if (err < 0) { printf("Channels count (%u) not available for playbacks: %s\n", channels, snd_strerror(err)); return err; } /* set the stream rate */ rrate = rate; err = snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0); if (err < 0) { printf("Rate %uHz not available for playback: %s\n", rate, snd_strerror(err)); return err; } if (rrate != rate) { printf("Rate doesn't match (requested %uHz, get %iHz)\n", rate, err); return -EINVAL; } /* set the buffer time */ err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir); if (err < 0) { printf("Unable to set buffer time %u for playback: %s\n", buffer_time, snd_strerror(err)); return err; } err = snd_pcm_hw_params_get_buffer_size(params, &size); if (err < 0) { printf("Unable to get buffer size for playback: %s\n", snd_strerror(err)); return err; } buffer_size = size; /* set the period time */ err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir); if (err < 0) { printf("Unable to set period time %u for playback: %s\n", period_time, snd_strerror(err)); return err; } err = snd_pcm_hw_params_get_period_size(params, &size, &dir); if (err < 0) { printf("Unable to get period size for playback: %s\n", snd_strerror(err)); return err; } period_size = size; /* write the parameters to device */ err = snd_pcm_hw_params(handle, params); if (err < 0) { printf("Unable to set hw params for playback: %s\n", snd_strerror(err)); return err; } return 0; } static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams) { int err; /* get the current swparams */ err = snd_pcm_sw_params_current(handle, swparams); if (err < 0) { printf("Unable to determine current swparams for playback: %s\n", snd_strerror(err)); return err; } /* start the transfer when the buffer is almost full: */ /* (buffer_size / avail_min) * avail_min */ err = snd_pcm_sw_params_set_start_threshold(handle, swparams, (buffer_size / period_size) * period_size); if (err < 0) { printf("Unable to set start threshold mode for playback: %s\n", snd_strerror(err)); return err; } /* allow the transfer when at least period_size samples can be processed */ /* or disable this mechanism when period event is enabled (aka interrupt like style processing) */ err = snd_pcm_sw_params_set_avail_min(handle, swparams, period_event ? buffer_size : period_size); if (err < 0) { printf("Unable to set avail min for playback: %s\n", snd_strerror(err)); return err; } /* enable period events when requested */ if (period_event) { err = snd_pcm_sw_params_set_period_event(handle, swparams, 1); if (err < 0) { printf("Unable to set period event: %s\n", snd_strerror(err)); return err; } } /* write the parameters to the playback device */ err = snd_pcm_sw_params(handle, swparams); if (err < 0) { printf("Unable to set sw params for playback: %s\n", snd_strerror(err)); return err; } return 0; } /* * Underrun and suspend recovery */ static int xrun_recovery(snd_pcm_t *handle, int err) { if (verbose) printf("stream recovery\n"); if (err == -EPIPE) { /* under-run */ err = snd_pcm_prepare(handle); if (err < 0) printf("Can't recovery from underrun, prepare failed: %s\n", snd_strerror(err)); return 0; } else if (err == -ESTRPIPE) { while ((err = snd_pcm_resume(handle)) == -EAGAIN) sleep(1); /* wait until the suspend flag is released */ if (err < 0) { err = snd_pcm_prepare(handle); if (err < 0) printf("Can't recovery from suspend, prepare failed: %s\n", snd_strerror(err)); } return 0; } return err; } /* * Transfer method - write only */ static int write_loop(snd_pcm_t *handle, signed short *samples, snd_pcm_channel_area_t *areas) { double phase = 0; signed short *ptr; int err, cptr; while (1) { generate_sine(areas, 0, period_size, &phase); ptr = samples; cptr = period_size; while (cptr > 0) { err = snd_pcm_writei(handle, ptr, cptr); if (err == -EAGAIN) continue; if (err < 0) { if (xrun_recovery(handle, err) < 0) { printf("Write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } break; /* skip one period */ } ptr += err * channels; cptr -= err; } } } /* * Transfer method - write and wait for room in buffer using poll */ static int wait_for_poll(snd_pcm_t *handle, struct pollfd *ufds, unsigned int count) { unsigned short revents; while (1) { poll(ufds, count, -1); snd_pcm_poll_descriptors_revents(handle, ufds, count, &revents); if (revents & POLLERR) return -EIO; if (revents & POLLOUT) return 0; } } static int write_and_poll_loop(snd_pcm_t *handle, signed short *samples, snd_pcm_channel_area_t *areas) { struct pollfd *ufds; double phase = 0; signed short *ptr; int err, count, cptr, init; count = snd_pcm_poll_descriptors_count (handle); if (count <= 0) { printf("Invalid poll descriptors count\n"); return count; } ufds = malloc(sizeof(struct pollfd) * count); if (ufds == NULL) { printf("No enough memory\n"); return -ENOMEM; } if ((err = snd_pcm_poll_descriptors(handle, ufds, count)) < 0) { printf("Unable to obtain poll descriptors for playback: %s\n", snd_strerror(err)); return err; } init = 1; while (1) { if (!init) { err = wait_for_poll(handle, ufds, count); if (err < 0) { if (snd_pcm_state(handle) == SND_PCM_STATE_XRUN || snd_pcm_state(handle) == SND_PCM_STATE_SUSPENDED) { err = snd_pcm_state(handle) == SND_PCM_STATE_XRUN ? -EPIPE : -ESTRPIPE; if (xrun_recovery(handle, err) < 0) { printf("Write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } init = 1; } else { printf("Wait for poll failed\n"); return err; } } } generate_sine(areas, 0, period_size, &phase); ptr = samples; cptr = period_size; while (cptr > 0) { err = snd_pcm_writei(handle, ptr, cptr); if (err < 0) { if (xrun_recovery(handle, err) < 0) { printf("Write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } init = 1; break; /* skip one period */ } if (snd_pcm_state(handle) == SND_PCM_STATE_RUNNING) init = 0; ptr += err * channels; cptr -= err; if (cptr == 0) break; /* it is possible, that the initial buffer cannot store */ /* all data from the last period, so wait awhile */ err = wait_for_poll(handle, ufds, count); if (err < 0) { if (snd_pcm_state(handle) == SND_PCM_STATE_XRUN || snd_pcm_state(handle) == SND_PCM_STATE_SUSPENDED) { err = snd_pcm_state(handle) == SND_PCM_STATE_XRUN ? -EPIPE : -ESTRPIPE; if (xrun_recovery(handle, err) < 0) { printf("Write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } init = 1; } else { printf("Wait for poll failed\n"); return err; } } } } } /* * Transfer method - asynchronous notification */ struct async_private_data { signed short *samples; snd_pcm_channel_area_t *areas; double phase; }; static void async_callback(snd_async_handler_t *ahandler) { snd_pcm_t *handle = snd_async_handler_get_pcm(ahandler); struct async_private_data *data = snd_async_handler_get_callback_private(ahandler); signed short *samples = data->samples; snd_pcm_channel_area_t *areas = data->areas; snd_pcm_sframes_t avail; int err; avail = snd_pcm_avail_update(handle); while (avail >= period_size) { generate_sine(areas, 0, period_size, &data->phase); err = snd_pcm_writei(handle, samples, period_size); if (err < 0) { printf("Write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } if (err != period_size) { printf("Write error: written %i expected %li\n", err, period_size); exit(EXIT_FAILURE); } avail = snd_pcm_avail_update(handle); } } static int async_loop(snd_pcm_t *handle, signed short *samples, snd_pcm_channel_area_t *areas) { struct async_private_data data; snd_async_handler_t *ahandler; int err, count; data.samples = samples; data.areas = areas; data.phase = 0; err = snd_async_add_pcm_handler(&ahandler, handle, async_callback, &data); if (err < 0) { printf("Unable to register async handler\n"); exit(EXIT_FAILURE); } for (count = 0; count < 2; count++) { generate_sine(areas, 0, period_size, &data.phase); err = snd_pcm_writei(handle, samples, period_size); if (err < 0) { printf("Initial write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } if (err != period_size) { printf("Initial write error: written %i expected %li\n", err, period_size); exit(EXIT_FAILURE); } } if (snd_pcm_state(handle) == SND_PCM_STATE_PREPARED) { err = snd_pcm_start(handle); if (err < 0) { printf("Start error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } /* because all other work is done in the signal handler, suspend the process */ while (1) { sleep(1); } } /* * Transfer method - asynchronous notification + direct write */ static void async_direct_callback(snd_async_handler_t *ahandler) { snd_pcm_t *handle = snd_async_handler_get_pcm(ahandler); struct async_private_data *data = snd_async_handler_get_callback_private(ahandler); const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t offset, frames, size; snd_pcm_sframes_t avail, commitres; snd_pcm_state_t state; int first = 0, err; while (1) { state = snd_pcm_state(handle); if (state == SND_PCM_STATE_XRUN) { err = xrun_recovery(handle, -EPIPE); if (err < 0) { printf("XRUN recovery failed: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } else if (state == SND_PCM_STATE_SUSPENDED) { err = xrun_recovery(handle, -ESTRPIPE); if (err < 0) { printf("SUSPEND recovery failed: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } avail = snd_pcm_avail_update(handle); if (avail < 0) { err = xrun_recovery(handle, avail); if (err < 0) { printf("avail update failed: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; continue; } if (avail < period_size) { if (first) { first = 0; err = snd_pcm_start(handle); if (err < 0) { printf("Start error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } else { break; } continue; } size = period_size; while (size > 0) { frames = size; err = snd_pcm_mmap_begin(handle, &my_areas, &offset, &frames); if (err < 0) { if ((err = xrun_recovery(handle, err)) < 0) { printf("MMAP begin avail error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } generate_sine(my_areas, offset, frames, &data->phase); commitres = snd_pcm_mmap_commit(handle, offset, frames); if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) { if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) { printf("MMAP commit error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } size -= frames; } } } static int async_direct_loop(snd_pcm_t *handle, signed short *samples ATTRIBUTE_UNUSED, snd_pcm_channel_area_t *areas ATTRIBUTE_UNUSED) { struct async_private_data data; snd_async_handler_t *ahandler; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t offset, frames, size; snd_pcm_sframes_t commitres; int err, count; data.samples = NULL; /* we do not require the global sample area for direct write */ data.areas = NULL; /* we do not require the global areas for direct write */ data.phase = 0; err = snd_async_add_pcm_handler(&ahandler, handle, async_direct_callback, &data); if (err < 0) { printf("Unable to register async handler\n"); exit(EXIT_FAILURE); } for (count = 0; count < 2; count++) { size = period_size; while (size > 0) { frames = size; err = snd_pcm_mmap_begin(handle, &my_areas, &offset, &frames); if (err < 0) { if ((err = xrun_recovery(handle, err)) < 0) { printf("MMAP begin avail error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } generate_sine(my_areas, offset, frames, &data.phase); commitres = snd_pcm_mmap_commit(handle, offset, frames); if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) { if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) { printf("MMAP commit error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } size -= frames; } } err = snd_pcm_start(handle); if (err < 0) { printf("Start error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } /* because all other work is done in the signal handler, suspend the process */ while (1) { sleep(1); } } /* * Transfer method - direct write only */ static int direct_loop(snd_pcm_t *handle, signed short *samples ATTRIBUTE_UNUSED, snd_pcm_channel_area_t *areas ATTRIBUTE_UNUSED) { double phase = 0; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t offset, frames, size; snd_pcm_sframes_t avail, commitres; snd_pcm_state_t state; int err, first = 1; while (1) { state = snd_pcm_state(handle); if (state == SND_PCM_STATE_XRUN) { err = xrun_recovery(handle, -EPIPE); if (err < 0) { printf("XRUN recovery failed: %s\n", snd_strerror(err)); return err; } first = 1; } else if (state == SND_PCM_STATE_SUSPENDED) { err = xrun_recovery(handle, -ESTRPIPE); if (err < 0) { printf("SUSPEND recovery failed: %s\n", snd_strerror(err)); return err; } } avail = snd_pcm_avail_update(handle); if (avail < 0) { err = xrun_recovery(handle, avail); if (err < 0) { printf("avail update failed: %s\n", snd_strerror(err)); return err; } first = 1; continue; } if (avail < period_size) { if (first) { first = 0; err = snd_pcm_start(handle); if (err < 0) { printf("Start error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } } else { err = snd_pcm_wait(handle, -1); if (err < 0) { if ((err = xrun_recovery(handle, err)) < 0) { printf("snd_pcm_wait error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } } continue; } size = period_size; while (size > 0) { frames = size; err = snd_pcm_mmap_begin(handle, &my_areas, &offset, &frames); if (err < 0) { if ((err = xrun_recovery(handle, err)) < 0) { printf("MMAP begin avail error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } generate_sine(my_areas, offset, frames, &phase); commitres = snd_pcm_mmap_commit(handle, offset, frames); if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) { if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) { printf("MMAP commit error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } first = 1; } size -= frames; } } } /* * Transfer method - direct write only using mmap_write functions */ static int direct_write_loop(snd_pcm_t *handle, signed short *samples, snd_pcm_channel_area_t *areas) { double phase = 0; signed short *ptr; int err, cptr; while (1) { generate_sine(areas, 0, period_size, &phase); ptr = samples; cptr = period_size; while (cptr > 0) { err = snd_pcm_mmap_writei(handle, ptr, cptr); if (err == -EAGAIN) continue; if (err < 0) { if (xrun_recovery(handle, err) < 0) { printf("Write error: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } break; /* skip one period */ } ptr += err * channels; cptr -= err; } } } /* * */ struct transfer_method { const char *name; snd_pcm_access_t access; int (*transfer_loop)(snd_pcm_t *handle, signed short *samples, snd_pcm_channel_area_t *areas); }; static struct transfer_method transfer_methods[] = { { "write", SND_PCM_ACCESS_RW_INTERLEAVED, write_loop }, { "write_and_poll", SND_PCM_ACCESS_RW_INTERLEAVED, write_and_poll_loop }, { "async", SND_PCM_ACCESS_RW_INTERLEAVED, async_loop }, { "async_direct", SND_PCM_ACCESS_MMAP_INTERLEAVED, async_direct_loop }, { "direct_interleaved", SND_PCM_ACCESS_MMAP_INTERLEAVED, direct_loop }, { "direct_noninterleaved", SND_PCM_ACCESS_MMAP_NONINTERLEAVED, direct_loop }, { "direct_write", SND_PCM_ACCESS_MMAP_INTERLEAVED, direct_write_loop }, { NULL, SND_PCM_ACCESS_RW_INTERLEAVED, NULL } }; static void help(void) { int k; printf( "Usage: pcm [OPTION]... [FILE]...\n" "-h,--help help\n" "-D,--device playback device\n" "-r,--rate stream rate in Hz\n" "-c,--channels count of channels in stream\n" "-f,--frequency sine wave frequency in Hz\n" "-b,--buffer ring buffer size in us\n" "-p,--period period size in us\n" "-m,--method transfer method\n" "-o,--format sample format\n" "-v,--verbose show the PCM setup parameters\n" "-n,--noresample do not resample\n" "-e,--pevent enable poll event after each period\n" "\n"); printf("Recognized sample formats are:"); for (k = 0; k < SND_PCM_FORMAT_LAST; ++k) { const char *s = snd_pcm_format_name(k); if (s) printf(" %s", s); } printf("\n"); printf("Recognized transfer methods are:"); for (k = 0; transfer_methods[k].name; k++) printf(" %s", transfer_methods[k].name); printf("\n"); } int main(int argc, char *argv[]) { struct option long_option[] = { {"help", 0, NULL, 'h'}, {"device", 1, NULL, 'D'}, {"rate", 1, NULL, 'r'}, {"channels", 1, NULL, 'c'}, {"frequency", 1, NULL, 'f'}, {"buffer", 1, NULL, 'b'}, {"period", 1, NULL, 'p'}, {"method", 1, NULL, 'm'}, {"format", 1, NULL, 'o'}, {"verbose", 1, NULL, 'v'}, {"noresample", 1, NULL, 'n'}, {"pevent", 1, NULL, 'e'}, {NULL, 0, NULL, 0}, }; snd_pcm_t *handle; int err, morehelp; snd_pcm_hw_params_t *hwparams; snd_pcm_sw_params_t *swparams; int method = 0; signed short *samples; unsigned int chn; snd_pcm_channel_area_t *areas; snd_pcm_hw_params_alloca(&hwparams); snd_pcm_sw_params_alloca(&swparams); morehelp = 0; while (1) { int c; if ((c = getopt_long(argc, argv, "hD:r:c:f:b:p:m:o:vne", long_option, NULL)) < 0) break; switch (c) { case 'h': morehelp++; break; case 'D': device = strdup(optarg); break; case 'r': rate = atoi(optarg); rate = rate < 4000 ? 4000 : rate; rate = rate > 196000 ? 196000 : rate; break; case 'c': channels = atoi(optarg); channels = channels < 1 ? 1 : channels; channels = channels > 1024 ? 1024 : channels; break; case 'f': freq = atoi(optarg); freq = freq < 50 ? 50 : freq; freq = freq > 5000 ? 5000 : freq; break; case 'b': buffer_time = atoi(optarg); buffer_time = buffer_time < 1000 ? 1000 : buffer_time; buffer_time = buffer_time > 1000000 ? 1000000 : buffer_time; break; case 'p': period_time = atoi(optarg); period_time = period_time < 1000 ? 1000 : period_time; period_time = period_time > 1000000 ? 1000000 : period_time; break; case 'm': for (method = 0; transfer_methods[method].name; method++) if (!strcasecmp(transfer_methods[method].name, optarg)) break; if (transfer_methods[method].name == NULL) method = 0; break; case 'o': for (format = 0; format < SND_PCM_FORMAT_LAST; format++) { const char *format_name = snd_pcm_format_name(format); if (format_name) if (!strcasecmp(format_name, optarg)) break; } if (format == SND_PCM_FORMAT_LAST) format = SND_PCM_FORMAT_S16; if (!snd_pcm_format_linear(format) && !(format == SND_PCM_FORMAT_FLOAT_LE || format == SND_PCM_FORMAT_FLOAT_BE)) { printf("Invalid (non-linear/float) format %s\n", optarg); return 1; } break; case 'v': verbose = 1; break; case 'n': resample = 0; break; case 'e': period_event = 1; break; } } if (morehelp) { help(); return 0; } err = snd_output_stdio_attach(&output, stdout, 0); if (err < 0) { printf("Output failed: %s\n", snd_strerror(err)); return 0; } printf("Playback device is %s\n", device); printf("Stream parameters are %uHz, %s, %u channels\n", rate, snd_pcm_format_name(format), channels); printf("Sine wave rate is %.4fHz\n", freq); printf("Using transfer method: %s\n", transfer_methods[method].name); if ((err = snd_pcm_open(&handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0) { printf("Playback open error: %s\n", snd_strerror(err)); return 0; } if ((err = set_hwparams(handle, hwparams, transfer_methods[method].access)) < 0) { printf("Setting of hwparams failed: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } if ((err = set_swparams(handle, swparams)) < 0) { printf("Setting of swparams failed: %s\n", snd_strerror(err)); exit(EXIT_FAILURE); } if (verbose > 0) snd_pcm_dump(handle, output); samples = malloc((period_size * channels * snd_pcm_format_physical_width(format)) / 8); if (samples == NULL) { printf("No enough memory\n"); exit(EXIT_FAILURE); } areas = calloc(channels, sizeof(snd_pcm_channel_area_t)); if (areas == NULL) { printf("No enough memory\n"); exit(EXIT_FAILURE); } for (chn = 0; chn < channels; chn++) { areas[chn].addr = samples; areas[chn].first = chn * snd_pcm_format_physical_width(format); areas[chn].step = channels * snd_pcm_format_physical_width(format); } err = transfer_methods[method].transfer_loop(handle, samples, areas); if (err < 0) printf("Transfer failed: %s\n", snd_strerror(err)); free(areas); free(samples); snd_pcm_close(handle); return 0; }