/* * imdct.c * Copyright (C) 2000-2002 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * The ifft algorithms in this file have been largely inspired by Dan * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html * * This file is part of a52dec, a free ATSC A-52 stream decoder. * See http://liba52.sourceforge.net/ for updates. * * a52dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * a52dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #ifdef LIBA52_DJBFFT #include #endif #ifndef M_PI #define M_PI 3.1415926535897932384626433832795029 #endif #include #include "a52.h" #include "a52_internal.h" #include "mm_accel.h" typedef struct complex_s { sample_t real; sample_t imag; } complex_t; static uint8_t fftorder[] = { 0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176, 8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88, 4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180, 252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172, 2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178, 10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90, 254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174, 6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86 }; /* Root values for IFFT */ static sample_t roots16[3]; static sample_t roots32[7]; static sample_t roots64[15]; static sample_t roots128[31]; /* Twiddle factors for IMDCT */ static complex_t pre1[128]; static complex_t post1[64]; static complex_t pre2[64]; static complex_t post2[32]; static sample_t a52_imdct_window[256]; static void (* ifft128) (complex_t * buf); static void (* ifft64) (complex_t * buf); static inline void ifft2 (complex_t * buf) { double r, i; r = buf[0].real; i = buf[0].imag; buf[0].real += buf[1].real; buf[0].imag += buf[1].imag; buf[1].real = r - buf[1].real; buf[1].imag = i - buf[1].imag; } static inline void ifft4 (complex_t * buf) { double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; tmp1 = buf[0].real + buf[1].real; tmp2 = buf[3].real + buf[2].real; tmp3 = buf[0].imag + buf[1].imag; tmp4 = buf[2].imag + buf[3].imag; tmp5 = buf[0].real - buf[1].real; tmp6 = buf[0].imag - buf[1].imag; tmp7 = buf[2].imag - buf[3].imag; tmp8 = buf[3].real - buf[2].real; buf[0].real = tmp1 + tmp2; buf[0].imag = tmp3 + tmp4; buf[2].real = tmp1 - tmp2; buf[2].imag = tmp3 - tmp4; buf[1].real = tmp5 + tmp7; buf[1].imag = tmp6 + tmp8; buf[3].real = tmp5 - tmp7; buf[3].imag = tmp6 - tmp8; } /* the basic split-radix ifft butterfly */ #define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \ tmp5 = a2.real * wr + a2.imag * wi; \ tmp6 = a2.imag * wr - a2.real * wi; \ tmp7 = a3.real * wr - a3.imag * wi; \ tmp8 = a3.imag * wr + a3.real * wi; \ tmp1 = tmp5 + tmp7; \ tmp2 = tmp6 + tmp8; \ tmp3 = tmp6 - tmp8; \ tmp4 = tmp7 - tmp5; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) /* split-radix ifft butterfly, specialized for wr=1 wi=0 */ #define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \ tmp1 = a2.real + a3.real; \ tmp2 = a2.imag + a3.imag; \ tmp3 = a2.imag - a3.imag; \ tmp4 = a3.real - a2.real; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) /* split-radix ifft butterfly, specialized for wr=wi */ #define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \ tmp5 = (a2.real + a2.imag) * w; \ tmp6 = (a2.imag - a2.real) * w; \ tmp7 = (a3.real - a3.imag) * w; \ tmp8 = (a3.imag + a3.real) * w; \ tmp1 = tmp5 + tmp7; \ tmp2 = tmp6 + tmp8; \ tmp3 = tmp6 - tmp8; \ tmp4 = tmp7 - tmp5; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) static inline void ifft8 (complex_t * buf) { double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; ifft4 (buf); ifft2 (buf + 4); ifft2 (buf + 6); BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]); BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]); } static void ifft_pass (complex_t * buf, sample_t * weight, int n) { complex_t * buf1; complex_t * buf2; complex_t * buf3; double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; int i; buf++; buf1 = buf + n; buf2 = buf + 2 * n; buf3 = buf + 3 * n; BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]); i = n - 1; do { BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]); buf++; buf1++; buf2++; buf3++; weight++; } while (--i); } static void ifft16 (complex_t * buf) { ifft8 (buf); ifft4 (buf + 8); ifft4 (buf + 12); ifft_pass (buf, roots16 - 4, 4); } static void ifft32 (complex_t * buf) { ifft16 (buf); ifft8 (buf + 16); ifft8 (buf + 24); ifft_pass (buf, roots32 - 8, 8); } static void ifft64_c (complex_t * buf) { ifft32 (buf); ifft16 (buf + 32); ifft16 (buf + 48); ifft_pass (buf, roots64 - 16, 16); } static void ifft128_c (complex_t * buf) { ifft32 (buf); ifft16 (buf + 32); ifft16 (buf + 48); ifft_pass (buf, roots64 - 16, 16); ifft32 (buf + 64); ifft32 (buf + 96); ifft_pass (buf, roots128 - 32, 32); } void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias) { int i, k; sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2; const sample_t * window = a52_imdct_window; complex_t buf[128]; for (i = 0; i < 128; i++) { k = fftorder[i]; t_r = pre1[i].real; t_i = pre1[i].imag; buf[i].real = t_i * data[255-k] + t_r * data[k]; buf[i].imag = t_r * data[255-k] - t_i * data[k]; } ifft128 (buf); /* Post IFFT complex multiply plus IFFT complex conjugate*/ /* Window and convert to real valued signal */ for (i = 0; i < 64; i++) { /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ t_r = post1[i].real; t_i = post1[i].imag; a_r = t_r * buf[i].real + t_i * buf[i].imag; a_i = t_i * buf[i].real - t_r * buf[i].imag; b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag; b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag; w_1 = window[2*i]; w_2 = window[255-2*i]; data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias; data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias; delay[2*i] = a_i; w_1 = window[2*i+1]; w_2 = window[254-2*i]; data[2*i+1] = delay[2*i+1] * w_2 + b_r * w_1 + bias; data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias; delay[2*i+1] = b_i; } } void a52_imdct_256(sample_t * data, sample_t * delay, sample_t bias) { int i, k; sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2; const sample_t * window = a52_imdct_window; complex_t buf1[64], buf2[64]; /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ for (i = 0; i < 64; i++) { k = fftorder[i]; t_r = pre2[i].real; t_i = pre2[i].imag; buf1[i].real = t_i * data[254-k] + t_r * data[k]; buf1[i].imag = t_r * data[254-k] - t_i * data[k]; buf2[i].real = t_i * data[255-k] + t_r * data[k+1]; buf2[i].imag = t_r * data[255-k] - t_i * data[k+1]; } ifft64 (buf1); ifft64 (buf2); /* Post IFFT complex multiply */ /* Window and convert to real valued signal */ for (i = 0; i < 32; i++) { /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ t_r = post2[i].real; t_i = post2[i].imag; a_r = t_r * buf1[i].real + t_i * buf1[i].imag; a_i = t_i * buf1[i].real - t_r * buf1[i].imag; b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag; b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag; c_r = t_r * buf2[i].real + t_i * buf2[i].imag; c_i = t_i * buf2[i].real - t_r * buf2[i].imag; d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag; d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag; w_1 = window[2*i]; w_2 = window[255-2*i]; data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias; data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias; delay[2*i] = c_i; w_1 = window[128+2*i]; w_2 = window[127-2*i]; data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias; data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias; delay[127-2*i] = c_r; w_1 = window[2*i+1]; w_2 = window[254-2*i]; data[2*i+1] = delay[2*i+1] * w_2 - b_i * w_1 + bias; data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias; delay[2*i+1] = d_r; w_1 = window[129+2*i]; w_2 = window[126-2*i]; data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias; data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias; delay[126-2*i] = d_i; } } static double besselI0 (double x) { double bessel = 1; int i = 100; do bessel = bessel * x / (i * i) + 1; while (--i); return bessel; } void a52_imdct_init (uint32_t mm_accel) { int i, k; double sum; /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */ sum = 0; for (i = 0; i < 256; i++) { sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256)); a52_imdct_window[i] = sum; } sum++; for (i = 0; i < 256; i++) a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum); for (i = 0; i < 3; i++) roots16[i] = cos ((M_PI / 8) * (i + 1)); for (i = 0; i < 7; i++) roots32[i] = cos ((M_PI / 16) * (i + 1)); for (i = 0; i < 15; i++) roots64[i] = cos ((M_PI / 32) * (i + 1)); for (i = 0; i < 31; i++) roots128[i] = cos ((M_PI / 64) * (i + 1)); for (i = 0; i < 64; i++) { k = fftorder[i] / 2 + 64; pre1[i].real = cos ((M_PI / 256) * (k - 0.25)); pre1[i].imag = sin ((M_PI / 256) * (k - 0.25)); } for (i = 64; i < 128; i++) { k = fftorder[i] / 2 + 64; pre1[i].real = -cos ((M_PI / 256) * (k - 0.25)); pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25)); } for (i = 0; i < 64; i++) { post1[i].real = cos ((M_PI / 256) * (i + 0.5)); post1[i].imag = sin ((M_PI / 256) * (i + 0.5)); } for (i = 0; i < 64; i++) { k = fftorder[i] / 4; pre2[i].real = cos ((M_PI / 128) * (k - 0.25)); pre2[i].imag = sin ((M_PI / 128) * (k - 0.25)); } for (i = 0; i < 32; i++) { post2[i].real = cos ((M_PI / 128) * (i + 0.5)); post2[i].imag = sin ((M_PI / 128) * (i + 0.5)); } #ifdef LIBA52_DJBFFT if (mm_accel & MM_ACCEL_DJBFFT) { fprintf (stderr, "Using djbfft for IMDCT transform\n"); ifft128 = (void (*) (complex_t *)) fftc4_un128; ifft64 = (void (*) (complex_t *)) fftc4_un64; } else #endif { fprintf (stderr, "No accelerated IMDCT transform found\n"); ifft128 = ifft128_c; ifft64 = ifft64_c; } }