Blob Blame History Raw
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2011, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

#include <iostream>
#include <string>
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "tmpDir.h"
#include "testMultiPartThreading.h"

#include <ImfPartType.h>
#include <ImfMultiPartInputFile.h>
#include <ImfMultiPartOutputFile.h>
#include <ImfOutputFile.h>
#include <ImfTiledOutputFile.h>
#include <ImfGenericOutputFile.h>
#include <ImfArray.h>
#include <ImfChannelList.h>
#include <ImfOutputPart.h>
#include <ImfInputPart.h>
#include <ImfTiledOutputPart.h>
#include <ImfTiledInputPart.h>
#include <IlmThreadPool.h>
#include <IlmThreadMutex.h>
#include <ImfTiledMisc.h>

namespace IMF = OPENEXR_IMF_NAMESPACE;
using namespace IMF;
using namespace std;
using namespace IMATH_NAMESPACE;
using namespace ILMTHREAD_NAMESPACE;

namespace
{

const int height = 263;
const int width = 197;

vector<Header> headers;
vector<int> pixelTypes;
vector<int> partTypes;
vector<int> levelModes;

Mutex mutexes[200];

template <class T>
void fillPixels (Array2D<T> &ph, int width, int height)
{
    ph.resizeErase(height, width);
    for (int y = 0; y < height; ++y)
        for (int x = 0; x < width; ++x)
        {
            //
            // We do this because half cannot store number bigger than 2048 exactly.
            //
            ph[y][x] = (y * width + x) % 2049;
        }
}

template <class T>
bool checkPixels (Array2D<T> &ph, int lx, int rx, int ly, int ry, int width)
{
    for (int y = ly; y <= ry; ++y)
        for (int x = lx; x <= rx; ++x)
            if (ph[y][x] != (y * width + x) % 2049)
            {
                cout << "value at " << x << ", " << y << ": " << ph[y][x]
                     << ", should be " << (y * width + x) % 2049 << endl << flush;
                return false;
            }
    return true;
}

template <class T>
bool checkPixels (Array2D<T> &ph, int width, int height)
{
    return checkPixels<T> (ph, 0, width - 1, 0, height - 1, width);
}

void setOutputFrameBuffer(FrameBuffer& frameBuffer, int pixelType,
                          Array2D<unsigned int>& uData, Array2D<float>& fData,
                          Array2D<half>& hData, int width)
{
    switch (pixelType)
    {
        case 0:
            frameBuffer.insert ("UINT",
                                Slice (IMF::UINT,
                                (char *) (&uData[0][0]),
                                sizeof (uData[0][0]) * 1,
                                sizeof (uData[0][0]) * width));
            break;
        case 1:
            frameBuffer.insert ("FLOAT",
                                Slice (IMF::FLOAT,
                                (char *) (&fData[0][0]),
                                sizeof (fData[0][0]) * 1,
                                sizeof (fData[0][0]) * width));
            break;
        case 2:
            frameBuffer.insert ("HALF",
                                Slice (IMF::HALF,
                                (char *) (&hData[0][0]),
                                sizeof (hData[0][0]) * 1,
                                sizeof (hData[0][0]) * width));
            break;
    }
}

void setInputFrameBuffer(FrameBuffer& frameBuffer, int pixelType,
                         Array2D<unsigned int>& uData, Array2D<float>& fData,
                         Array2D<half>& hData, int width, int height)
{
    switch (pixelType)
    {
        case 0:
            uData.resizeErase(height, width);
            frameBuffer.insert ("UINT",
                                Slice (IMF::UINT,
                                (char *) (&uData[0][0]),
                                sizeof (uData[0][0]) * 1,
                                sizeof (uData[0][0]) * width,
                                1, 1,
                                0));
            break;
        case 1:
            fData.resizeErase(height, width);
            frameBuffer.insert ("FLOAT",
                                Slice (IMF::FLOAT,
                                (char *) (&fData[0][0]),
                                sizeof (fData[0][0]) * 1,
                                sizeof (fData[0][0]) * width,
                                1, 1,
                                0));
            break;
        case 2:
            hData.resizeErase(height, width);
            frameBuffer.insert ("HALF",
                                Slice (IMF::HALF,
                                (char *) (&hData[0][0]),
                                sizeof (hData[0][0]) * 1,
                                sizeof (hData[0][0]) * width,
                                1, 1,
                                0));
            break;
    }
}

struct WritingTaskData
{
        int partNumber;
        int tx, ty, lx, ly;

        WritingTaskData(int partNumber):
            partNumber(partNumber)
        {}

        WritingTaskData(int partNumber, int tx, int ty, int lx, int ly):
            partNumber(partNumber),
            tx(tx),
            ty(ty),
            lx(lx),
            ly(ly)
        {}
};

class WritingTask: public Task
{
    public:
        WritingTask (TaskGroup *group, MultiPartOutputFile* file, vector<WritingTaskData*> data,
                     Array2D<FrameBuffer>* tiledFrameBuffers):
            Task(group),
            file(file),
            data(data),
            tiledFrameBuffers(tiledFrameBuffers)
        {}

        void execute()
        {
            for (int i = 0; i < data.size(); i++)
            {
                int partNumber = data[i]->partNumber;
                int partType = partTypes[partNumber];
                int pixelType = pixelTypes[partNumber];
                int levelMode = levelModes[partNumber];

                if (partType == 0)
                {
                    OutputPart part(*file, partNumber);
                    part.writePixels();
                }
                else
                {
                    int tx = data[i]->tx;
                    int ty = data[i]->ty;
                    int lx = data[i]->lx;
                    int ly = data[i]->ly;
                    TiledOutputPart part(*file, partNumber);

                    //
                    // We add lock here to assure that two threads that accessing
                    // the same part won't mess things up.
                    //

                    Lock lock(mutexes[partNumber]);

                    part.setFrameBuffer(tiledFrameBuffers[partNumber][ly][lx]);
                    part.writeTile(tx, ty, lx, ly);
                }
            }
        }

    private:
        MultiPartOutputFile* file;
        vector<WritingTaskData*> data;
        Array2D<FrameBuffer>* tiledFrameBuffers;
};

class RandomReadingTask : public Task
{
    public:
        RandomReadingTask (TaskGroup *group, MultiPartInputFile* file):
            Task(group),
            file(file)
        {}

        void execute()
        {
            int partNumber = rand() % headers.size();
            int partType = partTypes[partNumber];
            int pixelType = pixelTypes[partNumber];
            int levelMode = levelModes[partNumber];

            Array2D<unsigned int> uData;
            Array2D<float> fData;
            Array2D<half> hData;
            if (partType == 0)
            {
                int l1, l2;
                l1 = rand() % height;
                l2 = rand() % height;
                if (l1 > l2) swap(l1, l2);

                InputPart part(*file, partNumber);
                //
                // We add lock here to assure that two threads that accessing
                // the same part won't mess things up.
                //
                Lock lock(mutexes[partNumber]);

                FrameBuffer frameBuffer;
                setInputFrameBuffer(frameBuffer, pixelType,
                                    uData, fData, hData, width, height);

                part.setFrameBuffer(frameBuffer);
                part.readPixels(l1, l2);

                switch (pixelType)
                {
                    case 0:
                        assert(checkPixels<unsigned int>(uData, 0, width - 1, l1, l2, width));
                        break;
                    case 1:
                        assert(checkPixels<float>(fData, 0, width - 1, l1, l2, width));
                        break;
                    case 2:
                        assert(checkPixels<half>(hData, 0, width - 1, l1, l2, width));
                        break;
                }
            }
            else
            {
                int tx1, tx2, ty1, ty2;
                int lx, ly;

                TiledInputPart part(*file, partNumber);
                //
                // We add lock here to assure that two threads that accessing
                // the same part won't mess things up.
                //
                Lock lock(mutexes[partNumber]);

                int numXLevels = part.numXLevels();
                int numYLevels = part.numYLevels();

                lx = rand() % numXLevels;
                ly = rand() % numYLevels;
                if (levelMode == 1) ly = lx;

                int w = part.levelWidth(lx);
                int h = part.levelHeight(ly);

                int numXTiles = part.numXTiles(lx);
                int numYTiles = part.numYTiles(ly);
                tx1 = rand() % numXTiles;
                tx2 = rand() % numXTiles;
                ty1 = rand() % numYTiles;
                ty2 = rand() % numYTiles;
                if (tx1 > tx2) swap(tx1, tx2);
                if (ty1 > ty2) swap(ty1, ty2);

                FrameBuffer frameBuffer;
                setInputFrameBuffer(frameBuffer, pixelType,
                                    uData, fData, hData, w, h);

                part.setFrameBuffer(frameBuffer);
                part.readTiles(tx1, tx2, ty1, ty2, lx, ly);

                Box2i b1 = part.dataWindowForTile(tx1, ty1, lx, ly);
                Box2i b2 = part.dataWindowForTile(tx2, ty2, lx, ly);

                switch (pixelType)
                {
                    case 0:
                        assert(checkPixels<unsigned int>(uData, b1.min.x, b2.max.x, b1.min.y, b2.max.y,
                                                         w));
                        break;
                    case 1:
                        assert(checkPixels<float>(fData, b1.min.x, b2.max.x, b1.min.y, b2.max.y,
                                                  w));
                        break;
                    case 2:
                        assert(checkPixels<half>(hData, b1.min.x, b2.max.x, b1.min.y, b2.max.y,
                                                 w));
                        break;
                }
            }
        }

    private:
        MultiPartInputFile* file;
};

void generateRandomHeaders(int partCount, vector<Header>& headers, vector<WritingTaskData>& taskList)
{
    headers.clear();
    for (int i = 0; i < partCount; i++)
    {
        Header header(width, height);
        int pixelType = rand() % 3;
        int partType = rand() % 2;
        pixelTypes[i] = pixelType;
        partTypes[i] = partType;

        stringstream ss;
        ss << i;
        header.setName(ss.str());

        switch (pixelType)
        {
            case 0:
                header.channels().insert("UINT",  Channel(IMF::UINT));
                break;
            case 1:
                header.channels().insert("FLOAT", Channel(IMF::FLOAT));
                break;
            case 2:
                header.channels().insert("HALF",  Channel(IMF::HALF));
                break;
        }

        switch (partType)
        {
            case 0:
                header.setType(SCANLINEIMAGE);
                break;
            case 1:
                header.setType(TILEDIMAGE);
                break;
        }

        int tileX;
        int tileY;
        int levelMode;
        if (partType == 1)
        {
            tileX = rand() % width + 1;
            tileY = rand() % height + 1;
            levelMode = rand() % 3;
            levelModes[i] = levelMode;
            LevelMode lm;
            switch (levelMode)
            {
                case 0:
                    lm = ONE_LEVEL;
                    break;
                case 1:
                    lm = MIPMAP_LEVELS;
                    break;
                case 2:
                    lm = RIPMAP_LEVELS;
                    break;
            }
            header.setTileDescription(TileDescription(tileX, tileY, lm));
        }

        //
        // Add lines or tiles to task list.
        //
        if (partType == 0)
        {
            for (int j = 0; j < height; j++)
                taskList.push_back(WritingTaskData(i));
        }
        else
        {
            int numXLevel;
            int numYLevel;
            int* numXTiles;
            int* numYTiles;
            precalculateTileInfo (header.tileDescription(),
                                  0, width - 1,
                                  0, height - 1,
                                  numXTiles, numYTiles,
                                  numXLevel, numYLevel);

            for (int lx = 0; lx < numXLevel; lx++)
                for (int ly = 0; ly < numYLevel; ly++)
                {
                    if (levelMode == 1)
                        if (lx != ly) continue;

                    // Get all tasks for this level.
                    for (int tx = 0; tx < numXTiles[lx]; tx++)
                        for (int ty = 0; ty < numYTiles[ly]; ty++)
                            taskList.push_back(WritingTaskData(i, tx, ty, lx, ly));
                }

            delete[] numXTiles;
            delete[] numYTiles;
        }

//        if (partType == 0)
//        {
//            cout << "pixelType = " << pixelType << " partType = " << partType
//                 << endl << flush;
//        }
//        else
//        {
//            cout << "pixelType = " << pixelType << " partType = " << partType
//                 << " levelMode = " << levelModes[i] << endl << flush;
//        }

        headers.push_back(header);
    }
}

void
generateRandomFile (int partCount, const std::string & fn)
{
    //
    // Init data.
    //
    Array2D<half> halfData;
    Array2D<float> floatData;
    Array2D<unsigned int> uintData;
    fillPixels<unsigned int>(uintData, width, height);
    fillPixels<half>(halfData, width, height);
    fillPixels<float>(floatData, width, height);

    Array2D< Array2D< half > >* tiledHalfData = new Array2D< Array2D< half > >[partCount];
    Array2D< Array2D< float > >* tiledFloatData = new Array2D< Array2D< float > >[partCount];
    Array2D< Array2D< unsigned int > >* tiledUintData = new Array2D< Array2D< unsigned int > >[partCount];

    vector<GenericOutputFile*> outputfiles;
    vector<WritingTaskData> taskList;

    pixelTypes.resize(partCount);
    partTypes.resize(partCount);
    levelModes.resize(partCount);

    //
    // Generate headers and data.
    //
    cout << "Generating headers and data " << flush;
    generateRandomHeaders(partCount, headers, taskList);

    //
    // Shuffle tasks.
    //
    cout << "Shuffling " << taskList.size() << " tasks " << flush;
    int taskListSize = taskList.size();
    for (int i = 0; i < taskListSize; i++)
    {
        int a, b;
        a = rand() % taskListSize;
        b = rand() % taskListSize;
        swap(taskList[a], taskList[b]);
    }

    remove(fn.c_str());
    MultiPartOutputFile file(fn.c_str(), &headers[0],headers.size());

    //
    // Writing tasks.
    //
    cout << "Writing tasks " << flush;

    //
    // Pre-generating frameBuffers.
    //
    vector<void *> parts;
    vector<FrameBuffer> frameBuffers(partCount);
    Array<Array2D<FrameBuffer> >tiledFrameBuffers(partCount);
    for (int i = 0; i < partCount; i++)
    {
        if (partTypes[i] == 0)
        {
            OutputPart* part = new OutputPart(file, i);
            parts.push_back((void*) part);

            FrameBuffer& frameBuffer = frameBuffers[i];

            setOutputFrameBuffer(frameBuffer, pixelTypes[i], uintData, floatData, halfData, width);

            part->setFrameBuffer(frameBuffer);
        }
        else
        {
            TiledOutputPart* part = new TiledOutputPart(file, i);
            parts.push_back((void*) part);

            int numXLevels = part->numXLevels();
            int numYLevels = part->numYLevels();

            // Allocating space.
            switch (pixelTypes[i])
            {
                case 0:
                    tiledUintData[i].resizeErase(numYLevels, numXLevels);
                    break;
                case 1:
                    tiledFloatData[i].resizeErase(numYLevels, numXLevels);
                    break;
                case 2:
                    tiledHalfData[i].resizeErase(numYLevels, numXLevels);
                    break;
            }

            tiledFrameBuffers[i].resizeErase(numYLevels, numXLevels);

            for (int xLevel = 0; xLevel < numXLevels; xLevel++)
                for (int yLevel = 0; yLevel < numYLevels; yLevel++)
                {
                    if (!part->isValidLevel(xLevel, yLevel))
                        continue;

                    int w = part->levelWidth(xLevel);
                    int h = part->levelHeight(yLevel);

                    FrameBuffer& frameBuffer = tiledFrameBuffers[i][yLevel][xLevel];

                    switch (pixelTypes[i])
                    {
                        case 0:
                            fillPixels<unsigned int>(tiledUintData[i][yLevel][xLevel], w, h);
                            break;
                        case 1:
                            fillPixels<float>(tiledFloatData[i][yLevel][xLevel], w, h);
                            break;
                        case 2:
                            fillPixels<half>(tiledHalfData[i][yLevel][xLevel], w, h);
                            break;
                    }
                    setOutputFrameBuffer(frameBuffer, pixelTypes[i],
                                         tiledUintData[i][yLevel][xLevel],
                                         tiledFloatData[i][yLevel][xLevel],
                                         tiledHalfData[i][yLevel][xLevel],
                                         w);
                }
        }
    }

    //
    // Writing tasks.
    //
    TaskGroup taskGroup;
    ThreadPool* threadPool = new ThreadPool(32);
    vector<WritingTaskData*> list;
    for (int i = 0; i < taskListSize; i++)
    {
        list.push_back(&taskList[i]);
        if (i % 10 == 0 || i == taskListSize - 1)
        {
            threadPool->addTask(
                (new WritingTask (&taskGroup, &file, list, tiledFrameBuffers)));
            list.clear();
        }
    }

    delete threadPool;

    delete[] tiledHalfData;
    delete[] tiledUintData;
    delete[] tiledFloatData;
}

void
readWholeFiles (const std::string & fn)
{
    Array2D<unsigned int> uData;
    Array2D<float> fData;
    Array2D<half> hData;

    MultiPartInputFile file(fn.c_str());
    for (size_t i = 0; i < file.parts(); i++)
    {
        const Header& header = file.header(i);
        assert (header.displayWindow() == headers[i].displayWindow());
        assert (header.dataWindow() == headers[i].dataWindow());
        assert (header.pixelAspectRatio() == headers[i].pixelAspectRatio());
        assert (header.screenWindowCenter() == headers[i].screenWindowCenter());
        assert (header.screenWindowWidth() == headers[i].screenWindowWidth());
        assert (header.lineOrder() == headers[i].lineOrder());
        assert (header.compression() == headers[i].compression());

        //
        // It rarely fails here. Added code to see what's wrong when it happens.
        //
        ChannelList::ConstIterator i1 = header.channels().begin();
        ChannelList::ConstIterator i2 = headers[i].channels().begin();
        Channel c1 = i1.channel();
        Channel c2 = i2.channel();
        if (!(c1 == c2))
        {
            cout << " type " << c1.type << ", " << c2.type
                 << " xSampling " << c1.xSampling << ", " << c2.xSampling
                 << " ySampling " << c1.ySampling << ", " << c2.ySampling
                 << " pLinear " << c1.pLinear << ", " << c2.pLinear << flush;
        }

        assert (header.channels() == headers[i].channels());
        assert (header.name() == headers[i].name());
        assert (header.type() == headers[i].type());
    }

    cout << "Reading whole files " << flush;

    //
    // Shuffle part numbers.
    //
    vector<int> shuffledPartNumber;
    for (int i = 0; i < headers.size(); i++)
        shuffledPartNumber.push_back(i);
    for (int i = 0; i < headers.size(); i++)
    {
        int a = rand() % headers.size();
        int b = rand() % headers.size();
        swap (shuffledPartNumber[a], shuffledPartNumber[b]);
    }

    //
    // Start reading whole files.
    //
    int i;
    int partNumber;
    try
    {
        for (i = 0; i < headers.size(); i++)
        {
            partNumber = shuffledPartNumber[i];
            if (partTypes[partNumber] == 0)
            {
                FrameBuffer frameBuffer;
                setInputFrameBuffer(frameBuffer, pixelTypes[partNumber],
                                    uData, fData, hData, width, height);

                InputPart part(file, partNumber);
                part.setFrameBuffer(frameBuffer);
                part.readPixels(0, height - 1);
                switch (pixelTypes[partNumber])
                {
                    case 0:
                        assert(checkPixels<unsigned int>(uData, width, height));
                        break;
                    case 1:
                        assert(checkPixels<float>(fData, width, height));
                        break;
                    case 2:
                        assert(checkPixels<half>(hData, width, height));
                        break;
                }
            }
            else
            {
                FrameBuffer frameBuffer;
                TiledInputPart part(file, partNumber);
                int numXLevels = part.numXLevels();
                int numYLevels = part.numYLevels();
                for (int xLevel = 0; xLevel < numXLevels; xLevel++)
                    for (int yLevel = 0; yLevel < numYLevels; yLevel++)
                    {
                        if (!part.isValidLevel(xLevel, yLevel))
                            continue;

                        int w = part.levelWidth(xLevel);
                        int h = part.levelHeight(yLevel);

                        setInputFrameBuffer(frameBuffer, pixelTypes[partNumber],
                                            uData, fData, hData, width, height);

                        part.setFrameBuffer(frameBuffer);
                        int numXTiles = part.numXTiles(xLevel);
                        int numYTiles = part.numYTiles(yLevel);
                        part.readTiles(0, numXTiles - 1, 0, numYTiles - 1, xLevel, yLevel);
                        switch (pixelTypes[partNumber])
                        {
                            case 0:
                                assert(checkPixels<unsigned int>(uData, w, h));
                                break;
                            case 1:
                                assert(checkPixels<float>(fData, w, h));
                                break;
                            case 2:
                                assert(checkPixels<half>(hData, w, h));
                                break;
                        }
                    }
            }
        }
    }
    catch (...)
    {
        cout << "Error while reading part " << partNumber << endl << flush;
        throw;
    }
}

void
readPartialFiles (int randomReadCount, const std::string & fn)
{
    cout << "Reading partial files " << flush;
    MultiPartInputFile file(fn.c_str());

    TaskGroup taskGroup;
    ThreadPool* threadPool = new ThreadPool(32);

    for (int i = 0; i < randomReadCount; i++)
    {
        threadPool->addTask(
            (new RandomReadingTask (&taskGroup, &file)));
    }

    delete threadPool;
}

void
testWriteRead (int partNumber,
               int runCount,
               int randomReadCount,
               const std::string & tempDir)
{
    cout << "Testing file with " << partNumber << " part(s)." << endl << flush;
    std::string fn = tempDir +  "imf_test_multipart_threading.exr";

    for (int i = 0; i < runCount; i++)
    {
        generateRandomFile (partNumber, fn);
        readWholeFiles (fn);
        readPartialFiles (randomReadCount, fn);

        remove (fn.c_str());

        cout << endl << flush;
    }
}

} // namespace

void testMultiPartThreading (const std::string & tempDir)
{
    try
    {
        cout << "Testing the multi part APIs for multi-thread use" << endl;

        srand(1);

        int numThreads = ThreadPool::globalThreadPool().numThreads();
        ThreadPool::globalThreadPool().setNumThreads(32);

        testWriteRead ( 1, 1,   5, tempDir);
        testWriteRead ( 2, 2,  10, tempDir);
        testWriteRead ( 5, 5,  25, tempDir);
        testWriteRead (50, 2, 250, tempDir);

        ThreadPool::globalThreadPool().setNumThreads(numThreads);

        cout << "ok\n" << endl;
    }
    catch (const std::exception &e)
    {
        cerr << "ERROR -- caught exception: " << e.what() << endl;
        assert (false);
    }
}